Определение. Формулами приведения называют формулы, которые позволяют перейти от тригонометрических функций вида к функциям аргумента . С их помощью синус, косинус, тангенс и котангенс произвольного угла можно привести к синусу, косинусу, тангенсу и котангенсу угла из интервала от 0 до 90 градусов (от 0 до радиан). Таким образом, формулы приведения позволяют нам переходить к работе с углами в пределах 90 градусов, что, несомненно, очень удобно.

Формулы приведения:


Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет

2. Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Пример:

Вычислить

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен "+". Значит у приведенной функции тоже будет знак «+». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.


И еще один момент: формул приведения достаточно много по количеству, и сразу предостережем Вас от заучивания их всех наизусть. В этом абсолютно нет необходимости – существует , позволяющее легко применять формулы приведения.

Итак, запишем все формулы приведения в виде таблицы.


Эти формулы можно переписать с использованием градусов и радиан. Для этого достаточно вспомнить про связь между градусами и радианами , и везде заменить π на 180 градусов.

Примеры использования формул приведения

Цель этого пункта заключается в том, чтобы показать, как формулы приведения используются на практике при решении примеров.

Для начала стоит сказать, что существует бесконечное число способов представления угла под знаком тригонометрических функций в виде и . Это связано с тем, что угол может принимать любое значение. Покажем это на примере.

Для примера возьмем угол под знаком тригонометрической функции равным . Этот угол можно представить как , или как , или как , или еще множеством других способов.

А теперь давайте посмотрим, какие формулы приведения нам придется использовать в зависимости от представления угла. Для примера возьмем .

Если мы представим угол как , то этому представлению отвечает формула приведения вида , откуда получаем . Мы здесь можем указать значение тригонометрической функции: .

Для представления мы уже будем использовать формулу вида , которая нас приводит к следующему результату: .

Наконец, , так как соответствующая формула приведения имеет вид .

В заключение этих рассуждений стоит особо отметить, что существуют определенные удобства при использовании представлений угла, в которых угол имеет величину от 0 до 90 градусов (от 0 до пи пополам радиан).

Рассмотрим еще пример применения формул приведения.

Пример.

Используя формулы приведения, представьте через синус, а также через косинус острого угла.

Решение.

Чтобы применить формулы приведения, нам нужно угол 197 градусов представить в виде или , причем по условию задачи угол должен быть острым. Это можно сделать двумя способами: или . Таким образом, или .

Обратившись к соответствующим формулам приведения и , получаем и .

Ответ:

и .

Мнемоническое правило

Как мы уже упоминали выше, формулы приведения заучивать наизусть необязательно. Если внимательно на них посмотреть, то можно выявить закономерности, из которых можно получить правило, позволяющее получить любую из формул приведения. Его называют мнемоническим правилом (мнемоника – искусство запоминания).

Мнемоническое правило содержит три этапа:

Сразу стоит сказать, что для применения мнемонического правила нужно очень хорошо уметь определять знаки синуса, косинуса, тангенса и котангенса по четвертям , так как делать это придется постоянно.

Разберем применение мнемонического правила на примерах.

Пример.

Используя мнемоническое правило, запишите формулы приведения для и , считая угол углом первой четверти.

Решение.

Первый шаг правила нам делать не придется, так как углы под знаками тригонометрических функций уже записаны в нужном виде.

Определим знак функций и . При условии, что - угол первой четверти, угол тоже является углом первой четверти, а угол - углом второй четверти. Косинус в первой четверти имеет знак плюс, а тангенс во второй четверти имеет знак минус. На этом этапе искомые формулы будут иметь вид и . Со знаками разобрались, можно переходить к заключительному шагу мнемонического правила.

Так как аргумент функции косинус имеет вид , то название функции нужно поменять на кофункцию, то есть, на синус. А аргумент тангенса имеет вид , следовательно, название функции нужно оставить прежним.

В итоге имеем и . Можно заглянуть в таблицу формул приведения, чтобы убедиться в правильности полученных результатов.

Ответ:

и .

Для закрепления материала рассмотрим решение примера с конкретными углами.

Пример.

Используя мнемоническое правило, приведите к тригонометрическим функциям острого угла.

Решение.

Для начала представим угол 777 градусов в виде, необходимом для применения мнемонического правила. Это можно сделать двумя способами: или .

Исходный угол является углом первой четверти, синус для этого угла имеет знак плюс.

Для представления название синуса нужно оставить прежним, а для представления вида синус придется поменять на косинус.

В итоге имеем и .

Ответ:

И .

В заключение этого пункта рассмотрим пример, иллюстрирующий важность правильного представления угла под знаком тригонометрических функций для применения мнемонического правила: угол должен быть острым!!!

Вычислим тангенс угла . В принципе, обратившись к материалу статьи значения синуса, косинуса, тангенса и котангенса , мы можем сразу дать ответ на вопрос задачи: .

Если мы представим угол как или как , то можно воспользоваться мнемоническим правилом: и , что приводит нас к тому же результату.

А вот что может получиться, если взять представление угла , например, вида . При этом мнемоническое правило приведет нас к такому результату . Этот результат неверен, а объясняется это тем, что для представления мы не имели права применять мнемоническое правило, так как угол не является острым.

Доказательство формул приведения

Формулы приведения отражают периодичность, симметричность и свойства сдвига на углы и . Сразу заметим, что все формулы приведения можно доказывать, отбросив в аргументах слагаемое , так как оно означает изменение угла на целое число полных оборотов, а это не изменяет значения тригонометрических функций. Это слагаемое и служит отражением периодичности.

Первый блок из 16 формул приведения напрямую следует из свойств синуса, косинуса, тангенса и котангенса . На них даже не стоит останавливаться.

Переходим к следующему блоку формул. Сначала докажем первые две из них. Остальные следуют из них. Итак, докажем формулы приведения вида и .

Рассмотрим единичную окружность. Пусть начальная точка A после поворота на угол переходит в точку A 1 (x, y) , а после поворота на угол - в точку A 2 . Проведем A 1 H 1 и A 2 H 2 – перпендикуляры к прямой Ox .

Несложно видеть, что прямоугольные треугольники OA 1 H 1 и OA 2 H 2 равны по гипотенузе и двум прилежащим к ней углам. Из равенства треугольников и расположения точек A 1 и A 2 на единичной окружности становится видно, что если точка A 1 имеет координаты x и y , то точку A 2 имеет координаты −y и x . Тогда определения синуса и косинуса позволяют нам записать равенства и , откуда следует, что и . Этим доказаны рассматриваемые формулы приведения для любого угла .

Учитывая, что и (при необходимости смотрите статью основные тригонометрические тождества), а также только что доказанные формулы, получаем и . Так мы доказали две следующие формулы приведения.

Для доказательства формул приведения с аргументом достаточно его представить как , после чего использовать доказанные формулы и свойства тригонометрических функций с противоположными аргументами. Например, .

Аналогично доказываются и все остальные формулы приведения на базе уже доказанных путем двукратного применения. Например, представляется как , а - как . А и - как и соответственно.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы в курсе математики. Лишней информацией голову забивать не нужно, необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!» – это значит, что действительно, это необходимо именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

– задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от 0 до 450 градусов:

угол альфа лежит пределах от 0 до 90 градусов

* * *

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. Запомните следующее:

функция изменяется на кофункцию

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Вот и всё!

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй четверти, синус во второй четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов, значит:

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

***

В статье на решение был отмечен такой факт – синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет.

2. Правило «каким ты был, таким ты и остался».

Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Вычислить Sin(150˚)

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен +. Значит у приведенной функции тоже будет знак «плюс». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

При желании все формулы приведения можно свести в одну таблицу. Но все же легче запомнить эти два правила и пользоваться ими.

Нужна помощь в учебе?



Предыдущая тема:

Урок и презентация на тему: "Применение формул приведения при решении задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
1С: Школа. Интерактивные задания на построение для 7-10 классов
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов

Что будем изучать:
1. Немного повторим.
2. Правила для формул приведения.
3. Таблица преобразований для формул приведения.
4. Примеры.

Повторение тригонометрических функций

Ребята, с формулами привидения вы уже сталкивались, но так их еще не называли. Как думаете: где?

Посмотрите на наши рисунки. Правильно, когда вводили определения тригонометрических функций.

Правило для формул приведения

Давайте введем основное правило: Если под знаком тригонометрической функции содержится число вида π×n/2 + t, где n – любое целое число, то нашу тригонометрическую функцию можно привести к более простому виду, которая будет содержать только аргумент t. Такие формулы и называют формулами привидения.

Вспомним некоторые формулы:

  • sin(t + 2π*k) = sin(t)
  • cos(t + 2π*k) = cos(t)
  • sin(t + π) = -sin(t)
  • cos(t + π) = -cos(t)
  • sin(t + π/2) = cos(t)
  • cos(t + π/2) = -sin(t)
  • tg(t + π*k) = tg(x)
  • ctg(t + π*k) = ctg(x)

формул привидения очень много, давайте составим правило по которому будем определять наши тригонометрические функции при использовании формул привидения :

  • Если под знаком тригонометрической функции содержатся числа вида: π + t, π - t, 2π + t и 2π - t, то функция не изменится, то есть, например, синус останется синусом, котангенс останется котангенсом.
  • Если под знаком тригонометрической функции содержатся числа вида: π/2 + t, π/2 - t,
    3π/2 + t и 3π/2 - t, то функция изменится на родственную, т. е. синус станет косинусом, котангенс станет тангенсом.
  • Перед получившийся функцией, надо поставить тот знак, который имела бы преобразуемая функция при условии 0

Эти правила применимы и когда аргумент функции задан в градусах!

Так же мы можем составить таблицу преобразований тригонометрических функций:



Примеры применения формул приведения

1.Преобразуем cos(π + t). Наименование функции остается, т.е. получим cos(t). Далее предположим, что π/2

2. Преобразуем sin(π/2 + t). Наименование функции изменяется, т.е. получим cos(t). Далее предположим что 0 sin(t + π/2) = cos(t)



3. Преобразуем tg(π + t). Наименование функции остается, т.е. получим tg(t). Далее предположим, что 0

4. Преобразуем ctg(270 0 + t). Наименование функции изменяется, то есть получим tg(t). Далее предположим что 0

Задачи с формулами приведения для самостоятельного решения

Ребята, преобразуйте самостоятельно, используя наши правила:

1) tg(π + t),
2) tg(2π - t),
3) ctg(π - t),
4) tg(π/2 - t),
5) ctg(3π + t),
6) sin(2π + t),
7) sin(π/2 + 5t),
8) sin(π/2 - t),
9) sin(2π - t),
10) cos(2π - t),
11) cos(3π/2 + 8t),
12) cos(3π/2 - t),
13) cos(π - t).