2.1 Психологическая структура математических способностей

способность школьник математический спортивный

Математика - это инструмент познания, мышления, развития. Он богат возможностями творческого обогащения. Ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности. Особое значение математики в умственном развитии отметил еще в ХVIII веке М.В. Ломоносов: "Математику уже затем учить следует, что она ум в порядок приводит".

Существует общепризнанная классификация способностей. Согласно ей способности делятся на общие и специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.).

Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

В исследование математических способностей внесли свой вклад такие ученые в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, "школьные" способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского "Психология математического мышления", опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особое значение "бессознательному мыслительному процессу", утверждая, что "мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка" [цит. по 13, с. 45]. Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, - пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания [цит. по 13, с. 48]. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся "черновая" работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

* "сильную память", память на "предметы того типа, с которыми имеет дело математика", память скорее не на факты, а на идеи и мысли.

* "остроумие", под которым понимается способность "обнимать в одном суждении" понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отдалённых казалось бы, совершенно разнородных предметах.

* быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д. Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков - "геометров" и "алгебраистов". Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как "геометр".

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина "способности", но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем "синдром математической одаренности".

Говоря о структуре математических способностей, следует отметить вклад в разработку данной проблемы В.А. Крутецкого. Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

1. Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

2. Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

Д) Стремление к ясности, простоте, экономности и рациональности решений.

Е) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

А) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

4. Общий синтетический компонент.

А) Математическая направленность ума.

Не входят в структуру математической одарённости те компоненты, наличие которых в этой структуре не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума.

1. Быстрота мыслительных процессов как временная характеристика.

Индивидуальный темп работы не имеет решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные производить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трёхзначных чисел), но не умеющие решать сколько-нибудь сложные задачи.

Известно также, что существовали и существуют феноменальные "счётчики" не давшие математике ничего, а выдающийся математик А. Пуанкаре писал о себе, что без ошибки не может сделать даже сложение.

3. Память на цифры, формулы, числа. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

4. Способность к пространственным представлениям.

5. Способность наглядно представлять абстрактные математические отношения и зависимости.

Следует подчеркнуть, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере её можно считать общей схемой структуры математических способностей, в какой мере её можно отнести к вполне сложившимся одарённым математикам.

Типы математических складов ума.

Хорошо известно, что в любой области науки одарённость как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одарённости всегда можно наметить какие-то основные типологические различия в структуре одарённости, выделить определённые типы, значительно отличающиеся один от другого, разными путями приходящие к одинаково высоким достижениям в соответствующей области.

Об аналитическом и геометрическом типах упоминается работах А. Пуанкаре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным; б) абстрактного над образным и в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип.

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлечёнными схемами. У них нет потребности в наглядных опорах, в использование предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости "наталкивают" на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлечёнными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.

Гармонический тип.

Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся чётко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и образно-геометрический подход к решению многих задач.

Установленные типы, по-видимому, имеют общее значение. Наличие их подтверждается многими исследованиями [цит. по 10, с. 115].

Возрастные особенности математических способностей.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из ранних исследований Ж. Пиаже. Пиаже считал, что ребёнок только к 12 годам становится способным к абстрактному мышлению. Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришёл к выводу, что в плане наглядно-конкретном школьник мыслит до 12-13 лет, а мышление в плане формальной алгебре, связанной с овладением операциями, символами, складывается лишь к 17 годам.

Исследование отечественных психологов дают иные результаты. Ещё П.П. Блонский писал об интенсивном развитие у подростка (11-14 лет) обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах.

Возникает законный вопрос: в какой мере можно говорить о математических способностях по отношению к младшим школьникам? Исследования под руководством И.В. Дубровиной, даёт основание ответить на этот вопрос следующим образом. Конечно, исключая случаи особой одарённости, мы не можем говорить о сколько-либо сформированной структуре собственно математических способностей применительно к этому возрасту. Поэтому понятие "математические способности" условно в применении к младшим школьникам - детям 7-10-лет, при исследовании компонентов математических способностей в этом возрасте речь обычно может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже и в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ сотрудниками Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывает, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может "стать" весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер.

Произвольности здесь быть не может. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений.

Таким образом, возрастные особенности, о которых говорится, - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

Половые различия в характеристике математических способностей.

Оказывают ли какое-нибудь влияние на характер развития математических способностей и на уровень достижений в соответствующей области половые различия? Имеют ли место качественно своеобразные особенности математического мышления мальчиков и девочек в школьном возрасте?

В зарубежной психологии имеются работы, где, сделана попытка выявить, отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн, говорит о своём не согласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склоны к абстрактному мышлению и менее способны в этом отношении. Также проводились исследования под руководством Ч. Спирмена и Э. Торндайка, они пришли к выводу, что "в отношении способностей большой разницы нет", но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В. Дубровиной и С.И. Шапиро, они не обнаружили каких-либо качественных специфических особенностей в математическом мышление мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности.

Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различие надо отнести за счёт разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии.

Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

1. Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

2. Возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

3. Соответствующие исследования в отечественной психологии не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек.

Генетико-математические методы психогенетики

В 20--30-х годах работами С. Райта, Дж. Холдена и Р. Фишера были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях...

Изучение условий развития творческих способностей детей 5-6 лет в условиях дошкольного образовательного учреждения

Процесс развития личности человека происходит на протяжении всей его жизни и затрагивает все ее стороны: совершенствование высших психических функций, становление черт характера, развитие способностей...

Личность и направленность личности в психологии

Различают статистическую и динамическую структуры личности. Под статистической структурой понимается отвлеченная от реально функционирующей личности абстрактная модель, характеризующая основные компоненты психики индивида...

Механизмы взаимопонимания в общении

В психологической науке взаимопонимание рассматривается как комплексный феномен, состоящий, по крайней мере, из четырех компонентов. Во-первых...

Образное мышление как необходимая компонента теоретического мышления (на материале математики)

Подобные представления об этих вещах весьма полезны, поскольку ничто не является для нас более наглядным, чем фигура, ибо ее можно осязать и видеть. Р...

Особенности развития математических и спортивных способностей школьников

В литературе широко используется понятие спортивных способностей. К сожалению, это понятие до сих пор четко не определено. В него включают все параметры...

Половая дифференциация: мышление

Привлекательность диагностики общих, а не специальных способностей состоит в том, что есть возможность решить "одним махом" ряд проблем, поскольку общие способности необходимы для любой деятельности и, по мнению многих исследователей...

Психологическая характеристика математических способностей школьников. Педагогические способности и их диагностика

Структура совокупности психических качеств, которая выступает как способность, в конечном счете, определяется требованиями конкретной деятельности и является различной для разных видов деятельности. Так...

Психологические особенности допроса и других процессуальных действий в судебном следствии

Психологическая структура судебной деятельности складывается из: 1.Познавательной; 2.Конструктивной; 3.Воспитательной; Если на предварительном следствии основной является познавательная деятельность, то в суде основной...

Психология музыкальных способностей

Пути воспитания и развития педагогических способностей у учителей

Развитие способностей связано с усвоением и творческим применением знаний, навыков и умений. Особенно важна обобщенность знаний и умений -- способность человека использовать их в различных ситуациях...

Современные представления о структуре личности в трудах отечественных и зарубежных ученых

Структура личности - основные части личности и способы взаимодействия между ними. Структура личности - то, из чего (из каких элементов) и как построена личность. В самых разных моделях...

Способности и возраст

Каждая способность имеет свою структуру, где можно различить опорные и ведущие свойства. Например, основным свойством способности к изобразительному искусству будет высокая природная чувствительность зрительного анализатора...

Структура личности с позиций деятельностного подхода

Личность человека представляет собой сложную психическую систему, находящуюся в состоянии непрерывного движения, динамики, развития. Как системное образование личность включает в себя элементы...

Формы и методы работы психолога с одаренными детьми

Любая деятельность, которой овладевает человек, предъявляет высокие требования к его психологическим качествам (особенностям интеллекта, эмоционально-волевой сферы, сенсомоторики)...

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Специфика развития математических способностей. Формирование математических способностей детей дошкольного возраста. Логическое мышление. Роль дидактических игр. Методика обучения счету и основам математики дошкольников через игровую деятельность.

    реферат , добавлен 04.03.2008

    Психофизиологические особенности детей старшего дошкольного возраста. Мышление как познавательный психический процесс. Специфика его развития у детей в онтогенезе. Формирование элементарных математических способностей дошкольников в процессе воспитания.

    дипломная работа , добавлен 05.11.2013

    Теоретические основы формирования математических представлений детей старшего дошкольного возраста. Сказка и ее возможности в воспитании математических представлений детей 5-6 лет. Конспект занятий по развитию математических представлений дошкольников.

    контрольная работа , добавлен 06.10.2012

    Особенности формирования математических представлений у детей. Качественные изменения в познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.

    реферат , добавлен 26.05.2009

    Особенности формирования математических представлений у детей дошкольного возраста с нарушениями речи. Содержание обучения математическим представлениям детей, анализ освоения математических представлений у детей, соответствующие игры и упражнения.

    реферат , добавлен 19.10.2012

    Специфика дошкольного обучения. Основы формирования элементарных математических представлений у детей дошкольного возраста на примере детей 3-4 лет в разных видах деятельности. Содержание математического развития дошкольников: основные программные задачи.

    курсовая работа , добавлен 22.07.2015

    Психолого-педагогическая характеристика детей 5-6 лет, специфика развития их математических способностей. Требования к подготовленности воспитателя и роль дидактической игры. Вовлечение родителей в деятельность по развитию математических способностей.

    Исследование математических способностей в зарубежной психологии.

    В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

    Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

    Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

    Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

    Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

    1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

    2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

    3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

    7. Педагогические способности

    Педагогическим способностями называют совокупность индивидуально-психологических особенностей личности учителя, отвечающих требованиям педагогической деятельности и определяющих успех в овладении этой деятельностью. Отличие педагогических способностей от педагогических умений заключается в том, что педагогические способности - это особенности личности, а педагогические умения - это отдельные акты педагогической деятельности, осуществляемые человеком на высоком уровне.

    Каждая способность имеет свою структуру, в ней различают ведущие и вспомогательные свойства.

    Ведущими свойствами в педагогических способностях являются:

    педагогический такт;

    наблюдательность;

    любовь к детям;

    потребность в передаче знаний.

    Педагогический такт - это соблюдение педагогом принципа меры в общении с детьми в самых разнообразных сферах деятельности, умение выбрать правильный подход к учащимся.

    Педагогический такт предполагает:

    · уважение к школьнику и требовательность к нему;

    · развитие самостоятельности учащихся во всех видах деятельности и твердое педагогическое руководство их работой;

    · внимательность к психическому состоянию школьника и разумность и последовательность требований к нему;

    · доверие к учащимся и систематическая проверка их учебной работы;

    · педагогически оправданное сочетание делового и эмоционального характера отношений с учениками и др.

    Педагогическая наблюдательность - это способность учителя, проявляемая в умении подмечать существенные, характерные, даже малозаметные свойства учащихся. По-другому можно сказать, что педагогическая наблюдательность - это качество личности педагога, заключающееся в высоком уровне развития способности концентрации внимания на том или ином объекте педагогического процесса.

    способность математический педагогический

    Общая структура математических способностей (по В.А. Крутецкому)

    В этом параграфе представлена общая структура математических способностей в школьном возрасте по В.А. Крутецкому. Она рассматривается исходя из основных этапов решения задач: I. получение математической информации; II. переработка математической информации; III. хранение математической информации. Каждому из этапов I - III соответствует одна или несколько математических способностей. Приведем описание каждой математической способности с выделением действий, которые присущи каждой способности и описание протоколов решения задач способными и неспособными учениками, описанные Вадимом Андреевичем Крутецким в книге .

    Способности, необходимые для получения математической информации

    Способность к формализованному восприятию математического материала, схватывания формальной структуры задачи

    Характеристика способности. Эта математическая способность проявляется в стремлении к своеобразной формализации структуры математического материала в процессе его восприятия. Под формализацией понимается быстрое «схватывание» в конкретной задаче, в математическом выражении их формальной структуры, когда все содержательное (числовые данные, конкретное содержание) словно выпадает и остаются чистые соотношения между показателями, характеризующие принадлежность задачи или математического выражения к определенному типу. Формализованное восприятия - это своего рода обобщенное восприятие функциональных связей, отдельных от предметной и числовой формы, когда в конкретном воспринимается его общая структура.

    выделять различные элементы в математическом материале задачи;

    давать элементам математического материала задачи различную оценку;

    систематизировать элементы математического материала задачи;

    объединять элементы математического материала задачи в комплексы;

    отыскивать отношения и функциональные зависимости элементов математического материала задачи.

    Первые три действия направлены на восприятия математического материала задачи аналитически, другие же направлены на синтетическое восприятие математического материала задачи.

    Особенности выполнения I этапа решения задач учащимися, обладающие этой способностью. Для выяснения особенности восприятия математического материала В.А. Крутецкий используется серия «Системы однотипных задач». Эта серия рассчитана на учащихся, еще незнакомых с формулами сокращенного умножения. Исследовалось, как учащиеся могут выделить основное, главное, существенное с точки зрения типа задачи, отвлечься от несущественного, второстепенного, от деталей. При помощи этой серии исследуется также процесс обобщения - подведение объектов под только что, сформировавшееся в своей основе понятия.

    Рассмотрим решение одного из тестов серии «Системы однотипных задач» направленного на выяснения овладения этой способностью способными к математике и неспособными к математике учащимися. Серия представляет собой своеобразную «лестницу задач» одного и того же типа, от наиболее простой к весьма сложной. Выясняется, как сумеет испытуемый доказать, что данная задача, несмотря на ее внешнее отличие, принадлежит к тому же самому типу, и как, учитывая конкретные особенности задачи, он собирается решать ее по общей схеме решения задач установленного им типа.

    Приведем наглядный пример, как справлялись с одной из задач этой серией способные к математике ученики и неспособные.

    Способные ученики при решении задачи на применение формулу сокращенного умножения (a+b)2. Они легко выделяют существенные для данного типа моменты (сумма двух алгебраических выражений в квадрате), равно как и несущественные для данного типа (конкретная величина и характер алгебраических выражений, составляющие число a и b). Другими словами имела место своеобразная формализация структуры задачи при ее восприятии, когда задача (например, 6ах+1/2by)2 «схватывалась в такой форме: (+)2=.

    Неспособные же учащиеся узкоограниченно представляли себе «первое» и «второе» число в этой формуле, им было трудно понять, что a и b обозначают любую величину и любое алгебраическое выражение. Поэтому они и не улавливали самостоятельно структурного «костяка» задачи.

    Способности, необходимые для переработки математической информации

    Способность к логическому рассуждению в сфере количественных и пространственных отношений, числовой и знаковой символики

    Характеристика способности. Одной из особенности математики является алгоритмичность решения многих задач. Алгоритмом, как известно, называется определенное указание относительно того, какие операции и в какой последовательности надо выполнить, чтобы решить любую задачу некоторого типа. Алгоритм представляет собой обобщение, так как применим ко всем задачам соответствующего типа. Конечно, очень большое количество задач не алгоритмизируется и решается с помощью специальных, особых приемов. Поэтому способность находить пути решения, не подходящие под стандартное правило, является одной из существенных особенностей математического мышления.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

    логически рассуждают (доказывать, обосновывать);

    оперируют специальными математическими знаками, условными символическими обозначениями количественных величин и отношений и пространственных свойств;

    переводят на язык символов.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Для выяснения этой способности применяется серия «Задачи на доказательство». Серия представляет собой систему однотипных задач, все усложняющихся доказательств.

    Для примера возьмем решения задачи способным и неспособным учеником.

    Вот как решал задачу способный ученик: «Доказать, что сумма любых трех последовательных чисел делится на 3 (при любом целом значении а)». Последовательные числа - это такие числа, когда каждое из последующих на единицу больше предыдущего, так кажется? Как же тут доказать? 2, 3 и 4 в сумме действительно делятся на 3; 12, 13, 14 тоже в сумме дают 39. Можно доказать так: сумма трех одинаковых чисел, разумеется, делится на 3. Да еще прибавляются 3 единицы (второе число на единицу, а третье - на две единицы больше первого), которые тоже делятся на 3. Можно и алгебраически доказать: х+(х+1)+(х+2)=3х+3=3(х+1). Последнее выражение всегда можно разделить на 3, каково бы ни было исходное число х.

    Вот как справляется с подобной задачей неспособный ученик.

    Задача. Задумайте любое число, умножьте его на число, больше задуманного на 6 и прибавить 9. Доказать, что полученный результат является квадратом.

    Уч.: А что значит «является квадратом? Квадратом какого числа?

    Эксп.: Есть числа, которые не являются квадратом какого-либо числа, например 13 или 20. А есть числа, которые являются результатом возведения в квадрат какого-либо числа, например 9 (т.е.3).

    Уч.: Понятно. А здесь как доказывать?

    Эксп.: Подумай. Примени, способ алгебраического доказательства. Сказано: «Задумайте любое число». Как в алгебре обозначается «любое число»?

    Уч.: А теперь знаю: х(х+6)+9=х2+6х+9. Вот х2 и есть квадрат задуманного числа.

    Эксп.: Ты взял только часть результата. А тебе нужно доказать, что весь полученный результат есть квадрат какого-то числа. Квадратом какого выражения является полученный тобой результат? Вспомни формулы сокращенного умножения?

    Уч.: Знаю. Получится (х+3)2. (дает ответ не сразу).

    Эксп.: Но всегда ли в результате получится квадрат?

    Уч.: Не знаю.

    Лишь после продолжительного разъяснения экспериментатора ответил: «По-моему, всегда, так как мы брали любое число».

    Способность к быстрому и широкому обобщению математических объектов

    Характеристика способности. Способность к обобщению математического материала рассматривается в двух планах: 1) как способность человека увидеть в частном, конкретном уже известном ему общее (подведение частного случая под известное общее понятие) и 2) способность увидеть в единичном, частном пока еще неизвестное общее (вывести общее из частных случаев, образовать понятие). Одно дело - увидеть возможность применение к данному частному случаю уже известной ученику формулы, другое - на основание частных случаев вывести формулу, еще неизвестную ученику.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

    видят сходную ситуацию в сфере числовой и знаковой символики (где применить);

    владеют обобщенным типом решения, обобщенной схемой доказательства, рассуждения (что применить).

    И в том и другом случае необходимо отвлечься от конкретного содержания и выделить сходное, общее и существенное в структурах объектов, отношений или действий.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности В.А. Крутецкий предлагает серию задач, которая уже использовалась для проверки математической способности - способность к формализованному восприятию математического материала.

    Приведем пример решения одной из задачи этой серии. После решения примера на применение формулы «квадрат суммы» дается способному ученику для решения пример: (C+D+E)(E+C+D). Ученик применяет формулу и пишет (C+D+E)2 и соединяет два члена - (C+(D+E))2 после чего непосредственно применяет формулу и раскрывает скобки.

    Неспособные к математике ученик, усвоив формулу (a+b)2 и принцип рассуждения приступает к решению примера (1+а3b2)2.

    Эксп.: А вот этот пример можно решить по формуле сокращенного умножения?.

    Уч.: Здесь что-то другое - и a и b справа и не разделяются плюсом… (пишет: ». Эксп.: «Куда же делась единица?. Ученик молчит.

    Эксп.: Ну а реши такой пример: (2x+y)2.

    Ученик пишет, повторяя вслух формулу: 4x2+22xy+y2=4x2+4x+y2.

    Эксп.: Верно. Вот так же решай и предыдущую задачу.

    Уч.: А здесь что-то другое… квадрат первого - это.

    Эксп.: Давай рассуждать вместе. Чтобы применить формулу, надо убедиться, что мы имеем дело с квадратом суммы двух чисел. Тебе ясно, что это квадрат?

    Уч.: Вот здесь (показывает) цифра 2 показывает, что-то, что в скобках, надо помножить само на себя.

    Эксп.: Верно. А в скобках двучлен? Покажи, где первый член, первое «число».

    Уч.: …или нет, что я говорю… между членами должен быть знак плюс. Тут нет первого члена, только второй.

    В дальнейшем ученик все же решает данный пример с помощью экспериментатора.

    Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами

    Характеристика способности. Наряду с развернутыми умозаключениями в умственной деятельности школьников при решении задач занимает определенное место и свернутые умозаключения, когда ученик не осознает правила, общего положения, в соответствии с которыми он фактически действует.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют действие - свертывание умозаключений.

    То есть в процессе решения задач ученик не выполняет всей той цепи соображений и умозаключений, которые образуют полную, развернутую структуру решения.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На выявление этой способности применяется серия «Система разнотипных задач». Приведем пример как способный ученик решал одну из задач этой серии.

    Задача. Автомобиль прошел путь из А в Б со скоростью 20 км в час, а обратно со скоростью 30 км в час. Какова средняя скорость автомобиля за весь рейс?

    Уч.: Ясно, что со скоростью 30 км в час он шел меньше времени, чем со скоростью 20 км в час (при одинаковом пути). А раз так, то средняя скорость не будет равна 25 км в час. Как же решить? (Дальнейший ход решения разбиваем на отдельные звенья.) Буду решать по рассуждению.

    Скорость - это результат от деления пути на время. Значит, надо знать общий путь и общее время, затраченное на весь путь, и поделить общий путь на общее время.

    Теперь ясно, как решить. Надо узнать весь пройденный путь. Если путь в один конец обозначим через х, то весь путь - 2х.

    Теперь надо узнать время. Оно различно. Чтобы узнать время, надо поделить путь на скорость.

    На путь туда потратили

    А на путь обратно потрачено

    А всего весь путь занял, значит, =

    Делим теперь общий путь на общее количество часов:

    2х: км в час.

    Что касается неспособных, то у них не замечалось сколько-нибудь заметного свертывания даже в результате многих упражнений. На первых этапах овладения они постоянно путаются в громоздкой цепи умозаключений, которая с трудом, с помощью экспериментатора, закрепляется, постепенно превращается в относительно стройную систему. Ни о каком свертывании на этих этапах не может быть и речи, так как сам процесс рассуждения еще находится на стадии становления. Да и в дальнейшем они нуждались лишь в полном составе рассуждений.

    Гибкость мыслительных процессов в математической деятельности

    Характеристика способности. Эта математическая способность выражается в легком и свободном переключении с одной умственной операции на другую, в многообразие аспектов подходов к решению задач, в легкости перестройки сложившихся схем мышления и систем действий.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - переключаются на новый способ действия, т.е. с одной умственной операции на другую.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. На эту способность направлены серия тестов «Задачи, наталкивающие на «самоограничение»». В эту серию отобраны задачи на рассуждение, отличающиеся следующими способностями: либо их условие обычно воспринимается с ограничением, которого в действительности не существует, либо в процессе решения решающий невольно ограничивает себя некоторыми возможностями, неправомерно исключая друг друга. В том и другом случае непроизвольное ограничение приводит к мысли о невозможности решения задачи.

    Способный ученик решает задачу «В прямоугольном треугольнике один катет 7 см. Определить две другие стороны, если они выражены целыми числами».

    «Построить треугольник по одной стороне? Что-то странное…Правда, еще угол дан - прямой, но все равно нельзя… (чертит). Ну, вот же видно - сторона и угол постоянны, а вот сколько разных треугольников. Может быть, задача не решается? (Эксп.: Нет. Задача решается».) Странно… (чертит) Ну вот же ясно видно, что бесконечное количество решений (еще чертит). Что-то я не столько решаю, сколько пытаюсь доказать, что она не решается... Может быть, вариантов-то много, но все они выражаются дробными числами (еще раз читает условие). Может быть только один случай, когда выражаются целыми числами? Наверное, так - в условии об этом не говориться, но можно понять…Но тогда это надо доказать… Если гипотенуза а, а неизвестный катет b, то a2=49+b2 по Пифагору, а 49=a2-b2…Ну и что дальше? a+b=49/a-b. Чувствую, что это что-то даст…Если a и b - целые числа, то и их сумма - целое число…Ну вот, ясно все: значит, 49 делится на a-b без остатка. А 49 делится только на 7…Но a-b не может быть равно 7, так как тогда и треугольника не будет (гипотенуза в точности равна двум катетам - две стороны равны третий)…Где-то тут есть решение, я его упустил… Но ведь 49 делится не только 7, а и на 1, и на 49. Ну вот теперь решение в кармане: 49 тоже не может быть - гипотенуза будет больше, чем сумма катетов. Остается одно: a-b=1, a a+b=49. Получится 25 см. гипотенуза и 24 см катет».

    Неспособных учеников отличает инертность, косность, скованность мысли в сфере математических отношений и действий, устойчивый, стереотипный характер действий, навязчивое удерживание в сознании предшествующего принципа решений, способа действий, оказывающего тормозящее влияние при необходимости перестроить действие, что определяет ярко выраженную затрудненность и переключении от одной умственной операции к другой, качественно иной.

    Стремления к ясности, простоте решения, экономности и рациональности решения

    Характеристика способности. Эта особенность математического мышления способных к математике учащихся тесно связана с предыдущей. Для способных учеников весьма характерно стремление к наиболее рациональным решениям задач, поиски наиболее ясного, кратчайшего, а, следовательно, и наиболее «изящного» пути к цели. Это выглядит как своеобразная тенденция к экономии мысли, выражающееся в поисках наиболее экономных путей решения задач.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - находят наиболее рациональное решение задачи.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Эту способность Вадим Андреевич выяснял при помощи «Задачи на соображение логическое рассуждение». Для этого он сопоставлял реальный процесс рассуждения школьника с максимально развернутым. Сравнивал количество и характер «звеньев» в том и другом случае, они сопоставляются с характером и количеством звеньев действительно развернутой структуры.

    Например, способный ученик решал задачу: «Найти наименьшее число, которое при деление на 3 дает остаток 1, при делении на 4 дает остаток 2, при делении на 5 дает в остатке 3 и при делении на 6 дает в остатке 4» Способный ученик прежде всего нашел наименьшее общее кратное данных чисел (60) и произнес: «60-2=58. Это число 58». По просьбе экспериментатора пояснил: «Я представил все числа и остатки столбиком и сразу увидел, что во всех случаях разница между делителем и остатком - 2. Значит, если добавить к искомому числу 2, то оно разделится на все числа без остатка. Наименьшее из таких чисел - 60. Но теперь уберем двойку - будем 58».

    Неспособные учащиеся не обращают особого внимания на качество решения. Они прекращают работу после над задачей и не задаются вопросом: «А нельзя ли решить проще, яснее?».

    Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении)

    Характеристика способности. Под обратимостью мыслительного процесса понимается перестройка его направленности в смысле переключения с прямого на обратный ход мысли. Это понятие объединяет два разных, хотя и связанных друг с другом процесса.

    Во-первых, это установление двухсторонних (или обратимых) ассоциаций (связей) АБ в противоположность односторонним связям типа АБ, функционирующим только в одном направлении.

    Во-вторых, это обратимость мыслительного процесса в рассуждении, обратное направление мысли от результата, продукта к исходным данным, что имеет место, например, при переходе от прямой к обратной теореме.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действие - перестраивать мыслительный процесс с прямого на обратный ход мыслей.

    Особенности выполнения II этапа решения задач учащимися, обладающими данной способностью. Для выяснения этой способности В.А. Крутецкий предлагал серию задач «Прямые и обратные задачи». В этой серии включены парные задачи - прямая и обратная. Обратными задачами условно называются те, которые по сравнению с исходными (прямыми) задачами при сохранении сюжета искомое входит в состав условия, а один или несколько элементов условия становятся искомыми.

    Приведем пример как способные, и неспособные учащиеся решали эти задачи:

    Способный ученик овладел типом решения по формуле «произведения суммы двух чисел на их разность равно разности квадратов этих чисел».

    Ему предлагается разложить на множители выражение (x-y)2-25y8. Он тут говорит, что эта задача наоборот и тут уже есть разность квадратов и записывает выражение (x-y+5y4) (x-y-5y4). Свое решение он объясняет, что нужно подумать из чего получились квадраты и взять сумму этих чисел и помножить на разность.

    Неспособный ученик с трудом, после большого количества упражнений, овладел способом решения задач по этой формуле.

    Эксп.: Реши задачу 55=(ученик дает верный ответ). А теперь реши такую: какие числа надо перемножить, чтобы получить 25 (ученик дает верный ответ). Теперь смотри 55=25, а 25=55. Вторая задача обратная первой. Реши задачу (2x+y)(2x-y)= (ученик дает верный ответ). Правильно. Но если (2x+y)(2x-y)=4x2-4y2, то наоборот можно ли сказать, что 4x2-4y2= (2x+y)(2x-y)? (Ученик дает утвердительный ответ). А 9x2-4y2 чему равняется?

    Уч.: Не знаю. Это какие-то чудные задачи. Мы такие не решали.

    Эксп.: Да, не решали, но учимся решать. Вот ты подумай: чему равно произведение суммы двух чисел на их разность? Это ты знаешь.

    Уч.: Произведение суммы двух чисел на их разность равняется квадрату первого минус квадрат второго.

    Эксп.: Верно. А обратно можно сказать? Чему равна разность квадратов? Чему равно a2-b2?.

    Уч.: a2-b2=(a+b)(a-b).

    Эксп.: А 9x2-4y2 чему равно?

    Уч.: (9x+4y)(9x-4y)…

    Дальнейший ход беседы опускаем. Лишь после многократных пояснений и упражнений ученик научился решать задачи этого типа, да и только простейшие.

    Способности, необходимые для хранения математической информации

    Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

    Характеристика способности. Сущность математической памяти заключается в обобщенном запоминании типовых схем рассуждений и действий. Что же касается памяти на конкретные данные, числовые параметры, то она «нейтральна» по отношению к математическим способностям.

    Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:

    запоминают типовые признаки задач и обобщенные способы их решения, схемы рассуждений, основные линии доказательств, логические схемы;

    сохраняют в памяти типовые признаки задач и обобщенные способы их решения, схемы рассуждений, основные линии доказательств, логические схемы.

    Особенности выполнения III этапа решения задач учащимися, обладающими данной способностью. Способные ученики в большинстве случаев довольно долго помнят тип решенной ими в свое время задачи, общий характер действий, но не помнят конкретных данных задачи, чисел. Неспособные, наоборот, помнят только конкретные числовые данные или конкретные факты, относящиеся к задаче. Если неспособный помнит, что решал «какую-то задачу с клетками и кроликами», или «что-то про рыбу, которая весит 2 пуда», то способный обычно гораздо чаще помнит тип задачи: «Решал задачу на различные сочетания частей целого - про рыбу, у которой хвост с головой весит столько-то, а голова с туловищем - столько-то, и хвост с туловищем - еще столько-то».

    Выделенные способности тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

    Не входят в структуру математической одаренности те способности, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

    Быстрота мыслительных процессов как временная характеристика.

    Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

    Память на цифры, числа, формулы.

    Способность к пространственным представлениям.

    Способность наглядно представить абстрактные математические отношения и зависимости.

    Взгляды зарубежных психологов на математические способности. В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

    Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

    Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

    Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

    Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

    1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?
    2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.
    3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

    Взгляды Б.М. Теплова на математические способности. Хотя математические способности и не были предметом специального рассмотрения в трудах Б.М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

    В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

    Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

    Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

    Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» (Б.М. Теплов 1985, стр. 249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

    Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция . Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае «озарению» должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

    Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

    Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия.

    Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера». Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям:

    «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

    Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу

    Общая схема структуры математических способностей в школьном возрасте по В.А. Крутецкому .
    Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.
    1. Получение математической информации.
    Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.
    2. Переработка математической информации.

    1. Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
    2. Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
    3. Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
    4. Гибкость мыслительных процессов в математической деятельности.
    5. Стремление к ясности, простоте, экономности и рациональности решений.
    6. Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

    3. Хранение математической информации.

    1. Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

    4. Общий синтетический компонент.

    1. Математическая направленность ума. Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

    Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты :

    1. Быстрота мыслительных процессов как временная характеристика.
    2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).
    3. Память на цифры, числа, формулы.
    4. Способность к пространственным представлениям.
    5. Способность наглядно представить абстрактные математические отношения и зависимости.