Зависимость между давлением и объемом идеального газа при постоянной температуре показана на рис. 1.

Давление и объем образца газа обратно пропорциональны, т. е. их произведения являются постоянной величиной: pV = const. Это соотношение может быть записано в более удобном для решения задач виде:

p 1 V 1 = p 2 V 2 (закон Бойля-Мариотта).

Представим себе, что 50 л газа (V 1 ), находящегося под давлением 2 атм (p 1), сжали до объема 25 л (V 2), тогда его новое давление будет равно:

Зависимость свойств идеальных газов от температуры определяется законом Гей-Люссака: объем газа прямо пропорционален его абсолютной температуре (при постоянной массе: V = kT, где k - коэффициент пропорциональности). Это соотношение записывается обычно в более удобной форме для решения задач:

Например, если 100 л газа, находящегося при температуре 300К, нагревают до 400К, не меняя давления, то при более высокой температуре новый объем газа будет равен

Запись объединенного газового закона pV/T= = const может быть преобразована в уравнение Менделеева-Клапейрона:

где R - универсальная газовая постоянная, a - число молей газа.

Уравнение Менделеева-Клапейрона позволяет проводить самые разнообразные вычисления. Например, можно определить число молей газа при давлении 3 атм и температуре 400К, занимающих объем 70 л:

Одно из следствий объединенного газового закона: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Это закон Авогадро.

Из закона Авогадро в свою очередь вытекает также важное следствие: массы двух одинаковых объемов различных газов (естественно, при одинаковых давлении и температуре) относятся как их молекулярные массы:

m 1 /m 2 = M 1 /M 2 (m 1 и m 2 - массы двух газов);

M 1 IM 2 представляет собой относительную плотность.

Закон Авогадро применим только к идеальным газам. При нормальных условиях трудно сжимаемые газы (водород, гелий, азот, неон, аргон) можно считать идеальными. У оксида углерода (IV), аммиака, оксида серы (IV) отклонения от идеальности наблюдаются уже при нормальных условиях и возрастают с ростом давления и понижением температуры.

Пример 1. Углекислый газ объемом 1 л при нормальных условиях имеет массу 1,977 г. Какой реальный объем занимает моль этого газа (при н. у.)? Ответ поясните.

Решение. Молярная масса М (CO 2) = 44 г/моль, тогда объем моля 44/1,977 = 22,12 (л). Эта величина меньше принятой для идеальных газов (22,4 л). Уменьшение объема связано с возрастанием взаимо действия между молекулами СО 2 , т. е. отклонением от идеальности.

Пример 2. Газообразный хлор массой 0,01 г, находящийся в запаянной ампуле объемом 10 см 3 , нагревают от 0 до 273 o С. Чему равно начальное давление хлора при 0 o С и при 273 o С?

Решение. М r (Сl 2) =70,9; отсюда 0,01 г хлора соответствует 1,4 10 -4 моль. Объем ампулы равен 0,01 л. Используя уравнение Менделеева-Клапейрона pV=vRT, находим начальное давление хлора (p 1 ) при 0 o С:

аналогично находим давление хлора (р 2) при 273 o С: р 2 = 0,62 атм.

Пример 3. Чему равен объем, который занимают 10 г оксида углерода (II) при температуре 15 o С и давлении 790 мм рт. ст.?

Решение.

Задачи

1 . Какой объем (при н. у.) занимает 0,5 моль кислорода?
2 . Какой объем занимает водород, содержащий 18-10 23 молекул (при н. у.)?
3 . Чему равна молярная масса оксида серы(IV), если плотность этого газа по водороду равна 32?
4 . Какой объем занимают 68 г аммиака при давлении 2 атм и температуре 100 o С?
5 . В замкнутом сосуде емкостью 1,5 л находится смесь сероводорода с избытком кислорода при температуре 27 o С и давлении 623,2 мм рт. ст. Найдите суммарное количество веществ в сосуде.
6 . В большом помещении температура может измеряться с помощью "газового" термометра. Для этой цели стеклянную трубку, имеющую внутренний объем 80 мл, заполнили азотом при температуре 20 o С и давлении 101,325 кПа. После этого трубку медленно и осторожно вынесли из комнаты в более теплое помещение. Благодаря термическому расширению, газ вышел из трубки и был собран над жидкостью, давление пара которой незначительно. Общий объем газа, вышедшего из трубки (измерен при 20 o С и 101,325 кПа), равен 3,5 мл. Сколько молей азота потребовалось для заполнения стеклянной трубки и какова температура более теплого помещения?
7 . Химик, определявший атомную массу нового элемента X в середине XIX в., воспользовался следующим методом: он получал четыре соединения, содержащие элемент X (А, Б, В и Г), и определял массовую долю элемента (%) в каждом из них. В сосуд, из которого предварительно был откачан воздух, он помещал каждое соединение, переведенное в газообразное состояние при 250 o С, и устанавливал при этом давление паров вещества 1,013 10 5 Па. По разности масс пустого и полного сосудов определялась масса газообразного вещества. Аналогичная процедура проводилась с азотом. В результате можно было составить такую таблицу:

Газ Общая масса, г Массовая доля () элемента x в веществе, %
N 2 0,652 -
А 0,849 97,3
Б 2,398 68,9
В 4,851 85,1
Г 3,583 92,2

Определите вероятную атомную массу элемента X.

8 . В 1826 г. французский химик Дюма предложил метод определения плотности паров, применимый ко многим веществам. По этому методу можно было находить молекулярные массы соединений, используя гипотезу Авогадро о том, что в равных объемах газов и паров при равном давлении и температуре содержатся одинаковые количества молекул. Однако эксперименты с некоторыми веществами, сделанные по способу Дюма, противоречили гипотезе Авогадро и ставили под сомнение саму возможность определения молекулярной массы данным способом. Вот описание одного из таких экспериментов (рис. 2).

а. В горлышке сосуда а известного объема поместили навеску нашатыря б и нагрели в печи в до такой температуры t o , при которой весь нашатырь испарился. Получившиеся пары вытеснили воздух из сосуда, часть их выделилась наружу в виде тумана. Нагретый до t o сосуд, давление в котором равнялось атмосферному, запаяли по перетяжке г, затем охладили и взвесили.

Затем сосуд вскрыли, отмыли от сконденсированного нашатыря, высушили и снова взвесили. По разности определили массу m нашатыря.

Эта масса при нагревании до t o имела давление р, равное атмосферному, в сосуде объемом V. Для сосуда а заранее были определены давление и объем известной массы водорода при комнатной температуре. Отношение молекулярной массы нашатыря к молекулярной массе водорода определяли по формуле

Получили величину М/М(Н 2) = 13,4. Отношение, вычисленное по формуле NH 4 Cl, составило 26,8.

б. Опыт повторили, но горлышко сосуда закрыли пористой асбестовой пробкой д, проницаемой для газов и паров. При этом получили отношение М /М(Н 2) = 14,2.

в. Повторили опыт б, но увеличили начальную навеску нашатыря в 3 раза. Отношение стало равным М/М (Н 2) = 16,5.
Объясните результаты описанного эксперимента и докажите, что закон Авогадро в данном случае соблюдался.

1. Моль любого газа занимает объем (при н. у.) 22,4 л; 0,5 моль О 2 занимает объем 22,40,5 = 11,2 (л).
2. Число молекул водорода, равное 6,02-10 23 (число Авогадро), при н. у. занимает объем 22,4 л (1 моль); тогда

3. Молярная масса оксида cepы(IV) : M(SO 2) = 322 = 64 (г/моль).
4. При н. у. 1 моль NНз, равный 17 г, занимает объем 22,4 л, 68 г занимает объем х л,

Из уравнения газового состояния p o V o /T o = p 1 V 1 /T 1 находим

смеси H 2 S и О 2 .

6 . При заполнении трубки азотом

В трубке осталось (при начальных условиях) V 1: 80-3,5 = 76,5 (мл). При повышении температуры азот, занимавший объем 76,5 мл (V 1) при 20 o С, стал занимать объем V 2 = 80 мл. Тогда, согласно Т 1 /Т 2 = = V 1 /V 2 имеем

Предположим, что при температуре 250 о С вещества А, Б, В, Г являются идеальными газами. Тогда по закону Авогадро

Масса элемента X в 1 моль вещества А, Б, В и Г (г/моль):

М(А) . 0,973 = 35,45; М (Б) . 0,689 = 70,91; М (В) . 0,851 = 177,17; М(Г) . 0,922= 141,78

Поскольку в молекуле вещества должно быть целое число атомов элемента X, нужно найти наибольший общий делитель полученных величин. Он составляет 35,44 г/моль, и это число можно считать вероятной атомной массой элемента X.

8. Объяснить результаты эксперимента легко сумеет любой современный химик. Хорошо известно, что возгонка нашатыря - хлорида аммония - представляет собой обратимый процесс термического разложения этой соли:

NH 4 Cl NH 3 + HCl.
53,5 17 36,5

В газовой фазе находятся аммиак и хлороводород, их средняя относительная молекулярная масса М т

Менее понятно изменение результата при наличии асбестовой пробки. Однако в середине прошлого века именно опыты с пористыми ("скважистыми") перегородками показали, что в парах нашатыря содержатся два газа. Более легкий аммиак проходит сквозь поры быстрее, и его легко заметить либо по запаху, либо с помощью влажной индикаторной бумаги.

Строгое выражение для оценки относительной проницаемости газов сквозь пористые перегородки дает молекулярно-кинетическая теооия газов. Средняя скорость молекул газа
, где R - газовая постоянная; Т - абсолютная температура; М - молярная масса. По этой формуле аммиак должен диффундировать быстрее хлороводорода:

Следовательно, при введении в горло колбы асбестовой пробки газ в колбе успеет несколько обогатиться тяжелым НС1 за время, пока происходит выравнивание давления с атмосферным. Относительная плотность газа при этом возрастает. При увеличении массы NH 4 C1 давление, равное атмосферному, установится позже (асбестовая пробка препятствует быстрому вытеканию паров из колбы), газ в колбе будет содержать хлороводорода больше, чем в предыдущем случае; плотность газа увеличится.

Прежде чем решать задачи, следует занть формулы и правила того, как найти объем газа. Следует вспомнить закон Авогадро. А сам объем газа можно вычислить при помощи нескольких формул, выбрав из них подходящую. При подборе необходимой формулы, большое значение имеют условия среды, в частности температура и давление.

Закон Авогадро

В нем говорится, что при одинаковом давлении и одинаковой температуре, в одних и тех же объемах разных газов, будет содержаться одинаковое число молекул. Количество молекул газа, содержащихся в одном моле, это есть число Авогадро. Из этого закона следует, что: 1 Кмоль (киломоль) идеального газа, причем любого, при одинаковом давлении и температуре (760 мм рт.ст. и t = 0*С) всегда занимает один объем = 22,4136 м3.

Как определить объем газа

  • Формулу V=n*Vm чаще всего можно встретить в задачах. Здесь объем газа в литрах - V, Vm – объем газа молярный (л/моль), который при нормальных условиях = 22,4 л/моль, а n – количество вещества в молях. Когда в условиях нет количества вещества, но при этом есть масса вещества, тогда поступаем таким образом: n=m/M. Здесь М – г/моль (молярная масса вещества), а масса вещества в граммах - m. В таблице Менделеева она написана под каждым элементом, как его атомная масса. Сложим все массы и получим искомую.
  • Итак, как рассчитать объем газа. Вот задача: в соляной кислоте растворить 10 г алюминия. Вопрос: сколько водорода может выделиться при н. у.? Уравнение реакции выглядит так: 2Al+6HCl(изб.)=2AlCl3+3H2. В самом начале находим алюминий (количество), вступивший в реакцию по формуле: n(Al)=m(Al)/M(Al). Массу алюминия (молярную) возьмем из таблицы Менделеева M(Al)=27г/моль. Подставим: n(Al)=10/27=0,37моль. Из химического уравнения видно, 3 моли водорода образовались при растворении 2-х молей алюминия. Следует рассчитать, а сколько же водорода выделится из 0,4 моли алюминия: n(H2)=3*0,37/2=0,56моль. Подставим данные в формулу и найдем объем этого газа. V=n*Vm=0,56*22,4=12,54л.

Объем грамм-молекулы газа так же, как и масса грамм-молекулы, является производной единицей измерения и выражается отношением единиц объема-литров или миллилитров к молю. Поэтому размерность грамм-молекулярного объема равна л/моль или мл/моль. Так как объем газа зависит от температуры и давления, то грамм-молекулярный объем газа в зависимости от условий бывает разным, но так как грамм-молекулы всех веществ содержат одинаковое количество молекул, то грамм-молекулы всех веществ при одинаковых условиях занимают одинаковый объем. При нормальных условиях. = 22,4 л/моль, или 22 400 мл/моль. Пересчет грамм-молекулярного объема газа при нормальных условиях на объем при данных условиях произво-. дится по уравнению: J- т-тр из которого следует, что где Vo- грамм-молекулярный объем газа при нормальных условиях,Умоль- искомый грамм-молекулярный объем газа. Пример. Вычислить грамм-молекулярный объем газа при 720 мм рт. ст. и 87°С. Решение. Важнейшие вычисления, относящиеся к грамм-молекулярному объему газа а) Пересчет объема газа на количество молей и количества молей на объем газа. Пример 1. Вычислить, сколько молей содержится в 500 л газа при нормальных условиях. Решение. Пример 2. Вычислить объем 3 моль газа при 27*С 780 мм рт. ст. Решение. Вычисляем грамм-молекулярный объем газа при указанных условиях: V - ™ ** РП ст. - 22.А л/моль. 300 град = 94 п. --273 врад 780 мм рт."ап.--24"° Вычисляем объем 3 молы ГРАММ МОЛЕКУЛЯРНЫЙ ОБЪЕМ ГАЗА V = 24,0 л/моль 3 моль = 72 л б) Пересчет массы газа на его объем и объема газа на его массу. В первом случае сначала вычисляют число молей газа по его массе, а затем объем газа по найденному числу молей. Во втором случае сначала вычисляют число молей газа по его объему, а затем по найденному числу молей - массу газа. Пример 1, Вычислить, какой объем займут (при н. у.) 5,5 г двуокиси углерода СО* Решение. |icoe ■= 44 г/моль V = 22,4л/моль 0,125 моль 2,80 л Пример 2. Вычислить массу 800 мл (при н. у.) окиси углерода СО. Решение. |*со => 28 г/моль m « 28 г/лнмь 0,036 дид* =» 1,000 г Если масса газа выражается не в граммах, а в килограммах или тоннах, а объем его выражен не в литрах или миллилитрах, а в кубических метрах, то возможен двоякий подход к этим вычислениям: или высшие меры раздробить в низшие, или вестн расчет ае с молями, а с килограмм-молекулами или тонна -молекулами, используя следующие отношения: при нормальных условиях 1 килограмм-молекула-22 400 л/кмоль, 1 тонна-молекула - 22 400 м*/тмоль. Размерность: килограмм-молекула - кг/кмоль, тонна-молекула - т/тмоль. Пример 1. Вычислить объем 8,2 т кислорода. Решение. 1 тонна-молекула Оа » 32 т/тмоль. Находим количество тонна-молекул кислорода, содержащееся в 8,2 т кислорода: 32 т/тмоль ** 0,1 Вычисляем объем кислорода: Уо, = 22 400 м*/тмоль 0,1 т/моль = 2240 ж» Пример 2. Вычислить массу 1000 -к* аммиака (при н. у.). Решение. Вычисляем количество тонна-молекул в указанной количестве аммиака: "-штаг5JT-0.045 т/моЛ Вычисляем массу аммиака: 1 тонна-молекула NH, 17 т/моль тыв, = 17 т/моль 0,045 т/мол * 0,765 т Общий принцип вычислений, относящихся к газовым смесям, заключается в том, что вычисления, относящиеся к отдельным компонентам, производятся отдельно, а затем суммируются результаты. Пример 1. Вычислить, какой объем займет при нормальных условиях газовая смесь, состоящая из 140 г азота и 30 е водорода. Решение. Вычисляем число молей азота и водорода, содержащихся в смеси (№. «= 28 е/моль; цн, = 2 г/моль): 140 £ 30 в 28 г/моль W Всего 20 моль. ГРАММ МОЛЕКУЛЯРНЫЙ ОБЪЕМ ГАЗА Вычисляем объем смеси: Уеден в 22"4 AlnoAb 20 моль « 448 л Пример 2. Вычислить массу 114 смеси (при н. у.) окиси углерода и углекислого газа, объемный состав которой выражается отношением: /лсо: /исо,= 8:3. Решение. По указанному составу находим объемы каждого на газов методом пропорционального деления, после чего вычисляем соответствующее им число молей: т/ II л» 8 Q »» 11 J 8 Q Ксоe 8 + 3 8 * Va>"a & + & * VCQM grfc -0"36 ^- grfc " « 0,134 жас* Вычисляв! массу каждого из газов по найденному числу молей каждого из них. 1»со 28 г/моль; jico. = 44 г/моль moo » 28 е!моль 0,36 моль «Юг тсо. = 44 е/жам» - 0,134 «аи> - 5,9 г Сложением найденных масс каждого из компонентов находим массу смеси: т^щ = 10 г -f 5,9 г = 15,9 е Вычисление молекулярной массы газа по грамм-молекулярному объему Выше был рассмотрев метод вычисления молекулярной массы газа по относительной плотности. Сейчас мы рассмотрим метод вычисления молекулярной массы газа по грамм-молекулярному объему. При вычислении исходят из того, что масса и объем газа прямо пропорциональны друг другу. Отсюда следует» что объем газа и его масса так относятся друг к другу, как грамм-молекулярный объем газа к грамм-молекулярной массе его, что в математической форме выражается так: V_ Ущц /я (х где Ун*»-грамм-молекулярный объем, р - грамм-молекулярная масса. Отсюда _ Уиоль т р? Рассмотрим методику вычислений на конкретном примере. " Пример. Масса 34$ ju газа при 740 мм рт, спи и 21° С равна 0,604 г. Вычислить молекулярную массу газа. Решение. Для решения требуется знать грамм-молеку-лярный объем газа. Поэтому, прежде чем приступить к вы чнслениям, надо остановиться па каком-то определенном грамм-молекулярном объеме газа. Можно воспользоваться стандартным грамм-молекулярным объемом газа, который равен 22,4 л/моль. Тогда указанный в условии задачи объем газа должен быть приведен к нормальным условиям. Но можно, наоборот, вычислить грамм-молекулярный объем газа при условиях, указанных в задаче. При первом методе вычисления получают следующее оформление: у 740 *мрт.ст.. 340 мл- 273 град ^ Q ^ 0 760 мм рт. ст. 294 град ™ 1 л.1 - 22,4 л/моль 0,604 в _ ы я,ыпя. -тп-8=44 г,М0АЬ При втором методе находим: V - 22»4 А!моль № мм рт. ст.-29А град 0А77 л1ылв. Уиол 273 врад 740 мм рт. ст. ~ Я*0** В обоих случаях мы вычисляем массу грамм-молекулы, но так как грамм-молекула численно равна молекулярной массе то тем самым мы находим молекулярную массу.

Наряду с массой и объемом в химических расчетах часто используется количество вещества, пропорциональное числу содержащихся в веществе структурных единиц. При этом в каждом случае должно быть указано, какие именно структурные единицы (молекулы, атомы, ионы и т. д.) имеются в виду. Единицей количества вещества является моль.

Моль - количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12С.

Число структурных единиц, содержащихся в 1 моле вещества (постоянная Авогадро) определено с большой точностью; в практических расчетах его принимают равным 6,02 1024 моль -1 .

Нетрудно показать, что масса 1 моля вещества (мольная масса), - выраженная в граммах, численно равна относительной молекулярной массе этого вещества.

Так, относительная молекулярная масса (или, сокращенно молекулярная масса) свободного хлора С1г равна 70,90. Следовательно, мольная масса молекулярного хлора составляет 70,90 г/моль. Однако мольная масса атомов хлора вдвое меньше (45,45 г/моль), так как 1 моль молекул хлора Сl содержит 2 моля атомов хлора.

Согласно закону Авогадро, в равных объемах любых газов, взятых при одной и той же температуре и одинаковом давлении, содержится одинаковое число молекул. Иными словами, одно и то же число молекул любого газа занимает при одинаковых условиях один и тот же объем. Вместе с тем 1 моль любого газа содержит одинаковое число молекул. Следовательно, при одинаковых условиях 1 моль любого газа занимает один и тот же объем. Этот объем называется мольным объемом газа и при нормальных условиях (0°С, давление 101, 425 кПа) равен 22,4 л.

Например, утверждение «содержание диоксида углерода в воздухе составляет 0,04% (об.)» означает, что при парциальном давлении СО 2 , равном давлению воздуха, и при той же температуре диоксид углерода, содержащийся в воздухе, займет 0,04% общего объема, занимаемого воздухом.

Контрольное задание

1. Сопоставить числа молекул, содержащихся в 1 г NH 4 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

2. Выразить в граммах массу одной молекулы диоксида серы.



4. Сколько молекул содержится в 5,00 мл хлора при нормальных условиях?

4. Какой объем при нормальных условиях занимают 27 10 21 молекул газа?

5. Выразить в граммах массу одной молекулы NО 2 -

6. Каково соотношение объемов, занимаемых 1 молем О 2 и 1 молем Оз (условия одинаковые)?

7. Взяты равные массы кислорода, водорода и метана при одинаковых условиях. Найти отношение объемов взятых газов.

8. На вопрос, какой объем займет 1 моль воды при нормальных условиях, получен ответ: 22,4 л. Правильный ли это ответ?

9. Выразить в граммах массу одной молекулы HCl.

Сколько молекул диоксида углерода находится в 1 л воздуха, если объемное содержание СО 2 составляет 0,04% (условия нормальные)?

10. Сколько молей содержится в 1 м 4 любого газа при нормальных условиях?

11. Выразить в граммах массу одной молекулы Н 2 О-

12. Сколько молей кислорода находится в 1 л воздуха, если объемное

14. Сколько молей азота находится в 1 л воздуха, если объемное содержание его составляет 78% (условия нормальные)?

14. Взяты равные массы кислорода, водорода и азота при одинаковых условиях. Найти отношение объемов взятых газов.

15. Сопоставить числа молекул, содержащихся в 1 г NО 2 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

16. Сколько молекул содержится в 2,00 мл водорода при нормальных условиях?

17. Выразить в граммах массу одной молекулы Н 2 О-

18. Какой объем при нормальных условиях занимают 17 10 21 молекул газа?

СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

При определении понятия скорости химической реакции необходимо различать гомогенные и гетерогенные реакции. Если реакция протекает в гомогенной системе, например, в растворе или в смеси газов, то она идет во всем объеме системы. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема системы. Поскольку отношение числа молей вещества к объему, в котором оно распределено, есть молярная концентрация вещества, скорость гомогенной реакции можно также определить как изменение концентрации в единицу времени какого-либо из веществ: исходного реагента или продукта реакции . Чтобы результат расчета всегда был положительным, независимо, от того, производится он по реагенту или продукту, в формуле используется знак «±»:



В зависимости от характера реакции время может быть выражено не только в секундах, как требует система СИ, но также в минутах или часах. В ходе реакции величина ее скорости не постоянна, а непрерывно изменяется: уменьшается, так как уменьшаются концентрации исходных веществ. Вышеприведенный расчет дает среднее значение скорости реакции за некоторый интервал времени Δτ = τ 2 – τ 1 . Истинная (мгновенная) скорость определяется как предел к которому стремится отношение ΔС / Δτ при Δτ → 0, т. е. истинная скорость равна производной концентрации по времени.

Для реакции, в уравнении которой есть стехиометрические коэффициенты, отличающиеся от единицы, значения скорости, выраженные по разным веществам, неодинаковы. Например для реакции А + 4В = D + 2Е расход вещества А равен одному молю, вещества В – трем молям, приход вещества Е – двум молям. Поэтому υ (А) = ⅓υ (В) = υ (D) =½υ (Е) или υ (Е) . = ⅔υ (В) .

Если реакция протекает между веществами, находящимися в различных фазах гетерогенной системы, то она может идти только на поверхности раздела этих фаз. Например, взаимодействие раствора кислоты и куска металла происходит только на поверхности металла. Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности раздела фаз:

.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагирующих веществ, возведенных в степени, равные коэффициентам при формулах этих веществ в уравнении реакции . Тогда для реакции

2А + В → продукты

справедливо соотношение υ ~ ·С А 2 ·С В, а для перехода к равенству вводится коэффициент пропорциональности k , называемый константой скорости реакции :

υ = k ·С А 2 ·С В = k ·[А] 2 ·[В]

(молярные концентрации в формулах могут обозначаться как буквой С с со­ответствующим индексом, так и формулой вещества, заключенной в квадратные скобки). Физический смысл константы скорости реакции – скорость реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Размерность константы скорости реакции зависит от числа сомножителей в правой части уравнения и может быть с –1 ; с –1 ·(л/моль); с –1 ·(л 2 /моль 2) и т. п., то есть такой, чтобы в любом случае при вычислениях скорость реакции выражалась в моль·л –1 ·с –1 .

Для гетерогенных реакций в уравнение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, представ­ляет постоянную величину и входит в константу скорости, например, для процесса горения угля С + О 2 = СО 2 закон действия масс записывается:

υ = k I ·const··= k ·,

где k = k I ·const.

В системах, где одно или несколько веществ являются газами, скорость реакции зависит также и от давления. Например, при взаимодействии водорода с парами иода H 2 + I 2 =2HI скорость химической реакции будет определяться выражением:

υ = k ··.

Если увеличить давление, например, в 4 раза, то во столько же раз уменьшится объем, занимаемый системой, и, следовательно, во столько же раз увеличатся концентрации каждого из реагирующих веществ. Скорость реакции в этом случае возрастет в 9 раз

Зависимость скорости реакции от температуры описывается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2‑4 раза . Это означает, что при повышении температуры в арифметической прогрессии скорость химической реакции возрастает в геометрической прогрессии. Основанием в формуле прогрессии является температурный коэффициент скорости реакции γ, показывающий, во сколько раз увеличива­ется скорость данной реакции (или, что то же самое – константа скорости) при росте температуры на 10 градусов. Математически правило Вант-Гоффа выражается формулами:

или

где и – скорости реакции соответственно при начальной t 1 и конечной t 2 температурах. Правило Вант-Гоффа может быть также выражено следующими соотношениями:

; ; ; ,

где и – соответственно скорость и константа скорости реакции при тем­пературе t ; и – те же величины при температуре t +10n ; n – число «десятиградусных» интервалов (n =(t 2 –t 1)/10), на которые изменилась температура (может быть числом целым или дробным, положительным или отрицательным).

Контрольное задание

1. Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,05 и 0,01 моль/л, скорость реакции равна 5 10 -5 моль/(л-мин).

2. Во сколько раз изменится скорость реакции 2А + В -> А2В, если концентрацию вещества А увеличить в 2 раза, а концентрацию вещества В уменьшить в 2 раза?

4. Во сколько раз следует увеличить концентрацию вещества, В 2 в системе 2А 2 (г.) + В 2 (г.) = 2А 2 В(г.), чтобы при уменьшении концентрации вещества А в 4 раза скорость прямой реакции не изменилась?

4. Через некоторое время после начала реакции ЗА+В->2C+D концентрации веществ составляли: [А] =0,04 моль/л; [В] = 0,01 моль/л; [С] =0,008 моль/л. Каковы исходные концентрации веществ А и В?

5. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,04 до 0,12 моль/л, а концентрацию хлора - от 0,02 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

6. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,04 моль/л, [В] о = 0,05 моль/л. Константа скорости реакции равна 0,4. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

7. Как изменится скорость реакции 2СO + О2 = 2СО2 , протекающей в закрытом сосуде, если увеличить давление в 2 раза?

8. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 100 °С, приняв значение температурного коэффициента скорости реакции равным 4.

9. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 4 раза;

10. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если уменьшить объем системы в 4 раза?

11. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если повысить концентрацию NO в 4 раза?

12. Чему равен температурный коэффициент скорости реакции, если при увеличении температуры на 40 градусов скорость реакции

возрастает в 15,6 раза?

14. . Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,07 и 0,09 моль/л, скорость реакции равна 2,7 10 -5 моль/(л-мин).

14. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,01 моль/л, [В] о = 0,04 моль/л. Константа скорости реакции равна 0,5. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

15. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 2 раза;

16. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,05 до 0,1 моль/л, а концентрацию хлора - от 0,04 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

17. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 80 °С, приняв значение температурного коэффициента скорости реакции равным 2.

18. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 40 °С до 90 °С, приняв значение температурного коэффициента скорости реакции равным 4.

ХИМИЧЕСКАЯ СВЯЗЬ. ОБРАЗОВАНИЕ Й СТРУКТУРА МОЛЕКУЛ

1.Какие типы химической связи Вам известны? Приведите пример образования ионной связи по методу валентных связей.

2. Какую химическую связь называют ковалентной? Что характерно для ковалентного типа связи?

4. Какими свойствами характеризуется ковалентная связь? Покажите это на конкретных примерах.

4. Какой тип химической связи в молекулах Н 2; Cl 2 НС1?

5.Какой характер имеют связи в молекулах NCI 4 , CS 2 , СО 2 ? Укажите для каждой нз них направление смещения общей электронной пары.

6. Какую химическую связь называют ионной? Что характерно для ионного типа связи?

7. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

8. Изобразите все возможные способы перекрывания s-орбитали с р-орбиталью;. Укажите направленность связи при этом.

9. Объясните донорно-акцепторный механизм ковалентной связи на примере образования иона фосфония [РН 4 ]+.

10.В молекулах СО, С0 2 , связь полярная или неполярная? Объясните. Опишите водородную связь.

11. Почему некоторые молекулы, имеющие полярные связи, в целом являются неполярными?

12.Ковалентный или ионный тип связи характерен для следующих соединений: Nal, S0 2 , KF? Почему ионная связь является предельным случаем ковалентной?

14. Что такое металлическая связь? Чем она отличается от ковалентной связи? Какие свойства металлов она обусловливает?

14. Каков характер связей между атомами в молекулах; KHF 2 , Н 2 0, HNO?

15. Чем объяснить высокую прочность связи между атомами в молекуле азота N 2 и значительно меньшую в молекуле фосфора Р 4 ?

16 . Какую связь называют водородной? Почему для молекул H2S и НС1 в отличие от Н2О и HF образование водородных связей не характерно?

17. Какую связь называют ионной? Обладает ли ионная связь свойствами насыщаемости и направленности? Почему она является предельным случаем ковалентной связи?

18. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

Цель урока: сформировать понятие о молярном, миллимолярном и киломолярном объемах газов и единицах их измерения.

Задачи урока:

  • Обучающие – закрепить ранее изученные формулы и найти связь между объемом и массой, количеством вещества и числом молекул, закрепить и систематизировать знания учащихся.
  • Развивающие – развивать умения и навыки решать задачи, способности к логическому мышлению, расширять кругозор учащихся, их творческие способности, умения работать с дополнительной литературой, долговременную память, интерес к предмету.
  • Воспитательные – воспитывать личности с высоким уровнем культуры, формировать потребность в познавательной деятельности.

Тип урока: Комбинированный урок.

Оборудование и реактивы: Таблица «Молярный объем газов», портрет Авогадро, мензурка, вода, мерные стаканы с серой, оксидом кальция, глюкозы количеством вещества 1 моль.

План урока :

  1. Организационный момент (1 мин.)
  2. Проверка знаний в виде фронтального опроса (10 мин.)
  3. Заполнение таблицы (5 мин.)
  4. Объяснение нового материала (10 мин.)
  5. Закрепление (10 мин.)
  6. Подведение итогов (3 мин.)
  7. Домашнее задание (1 мин.)

Ход урока

1. Организационный момент.

2. Фронтальная беседа по вопросам.

Как называется масса 1 моля вещества?

Как связать молярную массу и количество вещества?

Чему равно число Авогадро?

Как связано число Авогадро и количество вещества?

А как связать массу и число молекул вещества?

3. А теперь заполните таблицу, решив задачи – это групповая работа.

Формула, вещества Масса, г Молярная масса, г/моль Количество вещества, моль Число молекул Число Авогадро, молекул/моль
ZnO ? 81 г/моль ? моль 18 10 23 молекул 6 10 23
MgS 5,6г 56 г/моль ? моль ? 6 10 23
BaCl 2 ? ? г/моль 0,5 моль 3 10 23 молекул 6 10 23

4. Изучение нового материала.

«...Мы хотим не только знать, как устроена природа (и как происходят природные явления), но и по возможности достичь цели, может быть, утопической и дерзкой на вид, – узнать, почему природа является именно такой, а не другой. В этом ученые находят наивысшее удовлетворение.»
Альберт Эйнштейн

Итак, наша цель найти наивысшее удовлетворение, как настоящие ученые.

А как называется объем 1 моля вещества?

От чего зависит молярный объем?

Чему будет равен молярный объем воды, если ее M r = 18, а ρ = 1 г/мл?

(Конечно 18 мл).

Для определения объема вы пользовались формулой известной из физики ρ = m / V (г/мл, г/см 3 , кг/м 3)

Отмерим этот объем мерной посудой. Отмерим молярные объемы спирта, серы, железа, сахара. Они разные, т.к. плотность разная, (таблица различных плотностей).

А как обстоит дело у газов? Оказывается, 1 моль любого газа при н.у. (0°С и 760 мм.рт.ст.) занимает один и тот же объем молярный 22,4 л/моль (показывается на таблице). А как будет называться объем 1 киломоля? Киломолярным. Он равен 22,4 м 3 /кмоль. Миллимолярный объем 22,4 мл/моль.

Откуда взялось это число?

Оно вытекает из закона Авогадро. Следствие из закона Авогадро: 1 моль любого газа при н.у. занимает объем 22,4 л/моль.

Немного о жизни итальянского ученого мы сейчас услышим. (сообщение о жизни Авогадро)

А теперь посмотрим зависимость величин от разных показателей:

Формула вещества Агрегатное состояние (при н.у.) Масса, г Плотность, г/мл Объем порций в 1 моль, л Количество вещества, моль Зависимость между объемом и количеством вещества
NaCl Твердое 58,5 2160 0,027 1 0,027
H 2 O Жидкое 18 1000 0,018 1 0,18
O 2 Газ 32 1,43 22,4 1 22,4
H 2 Газ 2 0,09 22,4 1 22,4
CO 2 Газ 44 1,96 22,4 1 22,4
SO 2 газ 64 2,86 22,4 1 22,4

Из сравнения полученных данных сделайте вывод (зависимость между объемом и количеством вещества для всех газообразных веществ (при н.у.) выражается одинаковой величиной, которая называется молярным объемом.)

Обозначается V m и измеряется л/моль и т.д. Выведем формулу для нахождения молярного объема

V m = V/ v , отсюда можно найти количество вещества и объем газа. А теперь вспомним ранее изученные формулы, можно ли их объединить? Можно получить универсальные формулы для расчетов.

m/M = V/V m ;

V/V m = N/Na

5. А теперь закрепим полученные знания с помощью устного счета, чтобы знания через умения стали применятся автоматически, то есть превратились в навыки.

За правильный ответ вы будите получать балл, по количеству баллов получите оценку.

  1. Назовите формулу водорода?
  2. Какова его относительная молекулярная масса?
  3. Какова его молярная масса?
  4. Сколько молекул водорода будет в каждом случае?
  5. Какой объем займут при н.у. 3 г H 2 ?
  6. Сколько будут весить 12 10 23 молекул водорода?
  7. Какой объем займут эти молекулы в каждом случае?

А теперь решим задачи по группам.

Задача №1

Образец: Какой объем занимает 0,2 моль N 2 при н.у.?

  1. Какой объем занимают 5 моль O 2 при н.у.?
  2. Какой объем занимают 2,5 моль H 2 при н.у.?

Задача №2

Образец: Какое количество вещества содержит водород объемом 33,6 л при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. Какое количество вещества содержит кислород объемом 0,224 л при н.у.?
  2. Какое количество вещества содержит углекислый газ объемом 4,48 л при н.у.?

Задача №3

Образец: Какой объем займут 56 г. газа СО при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. Какой объем займут 8 г. газа O 2 при н.у.?
  2. Какой объем займут 64 г. газа SO 2 при н.у.?

Задача №4

Образец: В каком объеме содержится 3·10 23 молекул водорода H 2 при н.у.?

Задачи для самостоятельного решения

Решите задачи по приведённому образцу:

  1. В каком объеме содержится 12,04 ·10 23 молекул водорода СO 2 при н.у.?
  2. В каком объеме содержится 3,01·10 23 молекул водорода O 2 при н.у.?

Понятие относительной плотности газов следует дать на основании их знаний о плотности тела: D = ρ 1 /ρ 2 , где ρ 1 – плотность первого газа, ρ 2 – плотность второго газа. Вы знаете формулу ρ = m/V. Заменив в этой формуле m на М, а V на V m , получим ρ = М/V m . Тогда относительную плотность можно выразить, используя правую часть последней формулы:

D = ρ 1 /ρ 2 = М 1 /М 2 .

Вывод: относительная плотность газов – число, показывающее, во сколько раз молярная масса одного газа больше молярной массы другого газа.

Например, определите относительную плотность кислорода по воздуху, по водороду.

6. Подведение итогов.

Решите задачи для закрепления:

Найдите массу (н.у.): а) 6 л. О 3 ; б) 14 л. газа H 2 S?

Какой объём водорода при н.у. образуется при взаимодействии 0,23 г натрия с водой?

Какова молярная масса газа, если 1 л. его имеет массу 3,17 г.? (Подсказка! m = ρ·V)