Помимо традиционно изучаемых типов волн можно привести примеры и других видов волн, которые занимают особое место при анализе процессов распространения колебаний в различных средах.

1. Ударная волна. Ударная волна (скачок уплотнения) - это распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. Она возникает при взрывах, детонации, при сверхзвуковых движениях тел, при мощных электрических разрядах и т.д. Например, при взрыве образуются продукты взрыва, обладающие большой плотностью и находящиеся под большим давлением. Расширяющиеся продукты взрыва сжимают окружающий воздух, причем в каждый момент времени сжатым оказывается лишь воздух, находящийся в определенном объеме, вне этого объема воздух остается в невозмущенном состоянии. С течением времени объем сжатого воздуха возрастает. Поверхность, которая отделяет сжатый воздух от невозмущенного воздуха, и представляет собой ударную волну (или как говорят, фронт ударной волны). На рис. 6.27,а в качестве примера приведен график распределения плотности в ударной волне, распространяющейся в реальном газе ( – плотность газа перед фронтом волны).

При ускоренном движении тела ударная волна возникает не сразу. Сначала возникает волна сжатия с непрерывными распределениями плотности и давления. С течением времени крутизна передней части волны возрастает и в некоторый момент времени происходит резкий скачок всех гидродинамических величин, возникает ударная волна.

В случае движения тела со сверхзвуковой скоростью (
) звуковые волны охватывают лишь часть объема газа, лежащую позади движущегося тела и ограниченную некоторой поверхностью, называемой характеристической поверхностью, поверхностью слабого разрыва или фронтом ударной волны.

При сверхзвуковом движении тела малых размеров со скоростью характеристическая поверхность (фронт волны) имеет вид круговой конической поверхности, вершина которой совпадает с движущемся телом О , а угол между образующими и траекторией тела удовлетворяет условию:
. Этот угол называют углом слабых возмущений или углом Маха (рис. 6.27,б).

В случае электромагнитных волн аналогом ударной звуковой волны, возникающей при движении тел со скоростями, превышающими фазовые скорости упругих волн в данной среде, является излучение Вавилова – Черенкова (см. §7.4.4).

2. Уединенная волна представляет собой волновое движение, которое в каждый момент времени локализовано в конечной области пространства и относительно медленно изменяет свою структуру при распространении.

Типичная, уединенная волна имеет вид одиночного импульса или перепада, но она может иметь и более сложную структуру. К уединенным волнам относят такие типы нелинейных волн, как уединенные волны в диссипативных средах, стационарные импульсные волны возбуждения в активных средах (нервные импульсы) и солитон в среде без потерь.

Солитон (от лат. solus – один) – структурно устойчивая уединенная волна в нелинейной диспергирующей среде. Структура солитона поддерживается стационарной за счет баланса между действием нелинейности среды и дисперсии.

Солитон впервые наблюдался на водяном канале в 1834 г., когда при резкой остановке баржи около ее носа образовался водяной выступ (водяной холм) и затем он стал самостоятельно распространяться по каналу, сохраняя на протяжении длительного времени свою структуру и скорость.

Рассмотрим возможность образования солитона на поверхности воды. Для волн, у которых длина волны значительно превышает глубину
водоема (
, мелкая вода) явление дисперсии отсутствует, они распространяются с фазовой скоростью
, где – ускорение свободного падения, а - смещение поверхности жидкости в вертикальном направлении в данной точке профиля волны (см. рис. 6.27,в). Из записанной формулы для фазовой скорости следует, что вершина водяного холма движется быстрее, чем точки вблизи его подножия. Это нелинейность среды приводит к тому, что крутизна фронта волны возрастает с течением времени, т.е. происходит пространственное сужение водяного холма (см. рис. 6.28,б).

Если же длина волны будет значительно меньше глубины
водоема (
), то в этом случае для волн малой амплитуды наблюдается сильная дисперсия , т.е. их фазовая скорость зависит от длины волны
. Это приводит к расплыванию водяного холма. Оказывается, что существуют волны с таким соотношением между и максимальным возвышением
, при котором наблюдается компенсация процессов расплывания холма из-за явления дисперсии и процессов его пространственного сужения. Такая компенсация и соответствует существованию солитона.

Солитоны ведут себя подобно частицам: при взаимодействии между собой или с некоторыми другими возмущениями, солитоны не разрушаются, а расходятся, вновь сохраняя свою структуру неизменной.

Солитоны играют важную роль в теории конденсированного состояния вещества, в частности в квантовой статистике, теории фазовых переходов. Структуры в форме солитонов обнаружены во многих динамических системах – в плазме, радиосхемах, лазерах, нервных волокнах.

Учебное издание

Марс Гильманович Валишев

Александр Александрович Повзнер

На теперешнем курсе семинары стали заключаються не в решении задач, а докладах на различную тематику. Думаю, будет верным оставлять их здесь в более или менее популярном виде.

Слово «солитон» происходит от английского solitary wave и означает именно уединенную волну (или говоря языком физики некоторое возбуждение).

Солитон возле острова Молокаи (Гавайский архипелаг)

Цунами - тоже солитон, но значительно более крупный. Уединенность не означает, что волна будет одна единственная на весь мир. Солитоны иногда встречаются группами, как возле Бирмы.

Солитоны в Андаманском море, омывающем берега Бирмы, Бенгалии и Тайланда.

В математическом смысле солитон является решением нелинейного уравнения в частных производных. Означает это следующее. Решать линейные уравнения что обыкновенные из школы, что дифференциальные человечество уже умеет достаточно давно. Но стоит возникнуть квадрату, кубу или еще более хитрой зависимости в дифференциальном уравнении от неизвестной величины и наработанный за все века математический аппарат терпит фиаско - человек пока не научился их решать и решения чаще всего угадываются или подбираются из различных соображений. Но Природу описывают именно они. Так нелинейные зависимости рождают практически все явления, чарующие глаз, да и позволяющие существовать жизни тоже. Радуга в своей математической глубине описывается функцией Ейри (правда, говорящая фамилия для ученого, чье исследование рассказывает о радуге?)

Сокращения человеческого сердца являются типичным примером биохимических процессов, под названием автокаталитические - такие, которые поддерживают сами свое существование. Все линейные зависимости и прямые пропорциональности хоть и просты для анализа, но скучны: в них ничего не меняется, ведь прямая остается одинаковой и в начале координат, и уходя в бесконечность. Более сложные функции имеют особенные точки: минимумы, максимумы, разломы и т. п., которые попав в уравнение создают бесчисленные вариации для развития систем.

Функции, объекты или явления, называющиеся солитонами, имеют два важных свойства: они стабильны во времени и сохраняют свою форму. Конечно, в жизни никто и ничто бесконечно долго им удовлетворять не будет, поэтому нужно сравнивать с аналогичными явлениями. Вернувшись к морской глади, рябь на её поверхности возникает и исчезает за доли секунды, большие волны, вздымаемые ветром взлетают и рассыпаются брызгами. Но цунами движется глухой стеной на сотни километров не теряя заметно в высоте волны и силе.

Есть несколько типов уравнений, приводящих к солитонам. Прежде всего, это задача Штурма-Лиувилля

В квантовой теории это уравнение известно под названием нелинейного уравнения Шредингера (Schrödinger) если функция имеет произвольный вид. В этой записи число называют собственным. Оно такое особенное, что его тоже находят при решении задачи, потому как не каждое его значение может дать решение. Роль собственных чисел в физике очень велика. Например, энергия является собственным числом в квантовой механике, переходы между различными системами координат так же не обходятся без них. Если потребовать, чтобы изменение параметра t в не изменяли собственные числа (а t может быть временем, например, или каким-то внешним влиянием на физическую систему), то придем к уравнению Кортевега-де Фриза (Korteweg-de Vries):

Есть и иные уравнения, но сейчас они не так важны.

В оптике фундаментальную роль играет явление дисперсии - зависимость частоты волны от её длины , а точнее так называемого волнового числа :

В простейшем случае она может быть линейна (, где - скорость света). В жизни ж часто получаем квадрат волнового числа, а то и что-то более хитрое. На практике, дисперсия ограничивает пропускную возможность оптоволокна, по которому только что бежали эти слова к вашему интернет-провайдеру с серверов WordPress’а. Но так же она позволяет пропускать по одному оптоволокну не один луч, а несколько. И в терминах оптики приведенные выше уравнения рассматривают простейшие случаи дисперсии.

Классифицировать солитоны можно по-разному. Например, солитоны, возникающие как некие математические абстракции в системах без трения и других потерь энергии зовут консервативными. Если рассматривать то же самое цунами на протяжении не очень длительного времени (а для здоровья так, должно быть, полезней), то оно будет консервативным солитоном. Иные солитоны существуют лишь благодаря потокам вещества и энергии. Их принято называть автосолитонами и дальше будем говорить именно об автосолитоне.

В оптике так же говорят про временные и пространственные солитоны. Из названия становится ясно, будем мы наблюдать солитон как некую волну в пространстве, или же это будет всплеск во времени. Временные возникают из-за балансировки нелинейных эффектов дифракцией - отклонения лучей от прямолинейного распространения. Например, посветили лазером в стекло (оптоволокно), и внутри лазерного луча показатель преломления стал зависеть от мощности лазера. Пространственные солитоны возникают из-за балансировки нелинейностей дисперсией.

Фундаментальный солитон

Как уже говорилось, широкополосность (то есть возможность передать много частот, а значит и полезной информации) волоконно-оптических линий связи ограничивается нелинейными эффектами и дисперсией, меняющими амплитуду сигналов и их частоту. Но с другой стороны, те же самые нелинейность и дисперсия могут привести к созданию солитонов, которые сохраняют свою форму и иные параметры существенно дольше чем все остальное. Естественным выводом отсюда является желание использовать сам солитон в качестве информационного сигнала (есть вспышка-солитон на конце волокна - передали единичку, нет - передали нолик).

Пример с лазером, изменяющим коэффициент преломления внутри оптоволокна по мере своего распространения достаточно жизненный, особенно если «запихнуть» в волокно тоньше человеческого волоса импульс в несколько ватт. Для сравнения много это или нет, типичная энергосберегающая лампочка мощностью в 9 Вт освещает письменный стол, но при этом размером с ладонь. В общем, мы не отойдем далеко от действительности предположив, что зависимость коэффициента преломления от мощности импульса внутри волокна будет выглядеть так:

После физических размышлений и математических преобразований различной сложности на амплитуду электрического поля внутри волокна можно получить уравнение вида

где и координата вдоль распространения луча и поперечная ему. Коэффициент играет важную роль. Он определяет соотношение между дисперсией и нелинейностью. Если он будет очень мал, то последнее слагаемое в формуле можно выкинуть в следствие слабости нелинейностей. Если он очень большой, то нелинейности задавив дифракцию будут единолично определять особенности распространения сигнала. Решить это уравнение пока пытались лишь при целых значениях . Так при результат особенно простой:
.
Функция гиперболического секанса хотя называется длинно, выглядит как обыкновенный колокольчик

Распределение интенсивности в поперечном сечении лазерного луча в форме фундаментального солитона.

Именно это решение и называется фундаментальным солитоном. Мнимая экспонента определяет распространение солитона вдоль оси волокна. На практике это все означает, что посветив на стенку мы увидели б яркое пятно в центре, интенсивность которого быстро спадала бы на краях.

Фундаментальный солитон как и все солитоны, возникающие с использованием лазеров, имеет определенные особенности. Во-первых, если мощность лазера окажется недостаточной, он не появится. Во-вторых, даже если где-то слесарь излишне перегнет волокно, капнет на него маслом или сделает иную пакость, солитон проходя сквозь поврежденную область возмутится (в физическом и переносном смыслах), но быстро вернется к своим изначальным параметрам. Люди и иные живые существа так же попадают под определение автосолитона и это умение возвращаться в спокойное состояние очень важно в жизни 😉

Потоки энергии внутри фундаментального солитона выглядят так:

Направление потоков энергии внутри фундаментального солитона.

Тут окружностью разделены области с различными направлениями потоков, а стрелками указано направление.

На практике можно получить несколько солитонов, если лазер имеет несколько каналов генерации, параллельных его оси. Тогда взаимодействие солитонов будет определяться степенью перекрытия их «юбок». Если рассеяние энергии не очень велико, можно считать, что потоки энергии внутри каждого солитона сохраняются во времени. Тогда солитоны начинают кружиться и сцепляться вместе. На следующем рисунке приведено моделирование столкновения двух троек солитонов.

Моделирование столкновения солитонов. На сером фоне изображены амплитуды (как рельеф), а на черном - распределение фазы.

Группы солитонов встречаются, цепляются и образуя Z-подобную структуру начинают вращаться. Еще более интересные результаты можно получить нарушением симметрии. Если расставить лазерные солитоны в шахматном порядке и выбросить один, структура начнет вращаться.

Нарушение симметрии в группе солитонов приводит к вращению центра инерции структуры в направлении стрелки на рис. справа и вращению вокруг мгновенного положения центра инерции

Вращений будет два. Центр инерции будет обращаться против часовой стрелки, а так же сама структура будет крутиться вокруг его положения в каждый момент времени. При чем периоды вращений будут равны, например, как у Земли и Луны, которая повернута к нашей планете лишь одной стороной.

Эксперименты

Столь необычные свойства солитонов обращают на себя внимание и заставляют задуматься о практическом применении уже около 40 лет. Сразу можно сказать, что солитоны можно использовать для сжатия импульсов. На сегодняшний день так можно получить длительность импульса до 6 фемтосекунд ( сек или дважды брать от секунды одну миллионную и результат поделить на тысячу). Отдельный интерес представляют солитонные линии связи, разработка которых идет уже довольно давно. Так Хасегавой было предложено следующую схему еще в 1983 году.

Солитонная линия связи.

Линия связи формируется из секций длиной около 50 км. Всего длина линии составляла 600 км. Каждая секция состоит из приемника с лазером передающих в следующий волновод усиленный сигнал, что позволило достичь скорости 160 Гбит/сек.

Презентация

Литература

  1. Дж. Лем. Введение в теорию солитонов. Пер. с англ. М.: Мир, - 1983. -294 с.
  2. Дж. Уизем Линейные и нелинейные волны. - М.: Мир, 1977. - 624 с.
  3. И. Р. Шен. Принципы нелинейной оптики: Пер. с англ./Под ред. С. А. Ахманова. - М.: Наука., 1989. - 560 с.
  4. С. А. Булгакова, А. Л. Дмитриев. Нелинейно-оптические устройства обработки информации// Учебное пособие. - СПб: СПбГУИТМО, 2009. - 56 с.
  5. Werner Alpers et. al. Observation of Internal Waves in the Andaman Sea by ERS SAR // Earthnet Online
  6. А. И. Латкин, А. В. Якасов. Автосолитонные режимы распространения импульса в волоконно-оптической линии связи с нелинейными кольцевыми зеркалами // Автометрия, 4 (2004), т.40.
  7. Н. Н. Розанов. Мир лазерных солитонов // Природа, 6 (2006). С. 51-60.
  8. О. А. Татаркина. Некоторые аспекты проектирования солитонных волоконно-оптических систем передачи // Фундаментальные исследования, 1 (2006), С. 83-84.

P. S. О диаграммах в .

Морякам давно известны одиночные волны большой высоты, которые губят корабли. Долгое время считалось, что подобное встречается только в открытом океане. Однако последние данные говорят о том, что одиночные волны-убийцы (до 20-30 метров высотой), или солитоны (от английского solitary - «уединенный»), могут появляться и в прибрежных зонах. Происшествие с «Бирмингемом" Мы находились примерно в 100 милях к юго-западу от Дурбана на пути в Кейптаун. Крейсер шел быстро и почти без качки, встречая умеренную зыбь и ветровые волны, когда внезапно мы провалились в яму и понеслись вниз навстречу следующей волне, которая прокатилась через первые орудийные башни и обрушилась на наш открытый капитанский мостик. Я был сбит с ног и на высоте 10 метров над уровнем моря оказался в полуметровом слое воды. Корабль испытал такой удар, что многие решили, что нас торпедировали. Капитан сразу же уменьшил ход, но эта предосторожность оказалась напрасной, так как умеренные условия плавания восстановились и больше «ям» не попадалось. Это происшествие, случившееся ночью с затемненным кораблем. было одним из наиболее волнующих в море. Я охотно верю, что груженое судно при таких обстоятельствах может потонуть». Так описывает неожиданную встречу с одиночной катастрофической волной британский офицер с крейсера "Бирмингем-. Эта история произошла во время Второй мировой войны, поэтому понятна реакция экипажа, решившего, что крейсер торпедирован. Не столь удачно закончилось аналогичное происшествие с пароходом "Уарита" в 1909 году. На нем находились 211 пассажиров и команда. Погибли все. Такие одиночные неожиданно появляющиеся в океане волны, собственно, и получили название волн-убийц, или солитонов. Казалось бы. любой шторм можно назвать -убийцей.. Ведь действительно, сколько судов погибло во время бури и гибнет сейчас? Сколько моряков нашли свое последнее пристанище в пучинах бушующего моря? И все же волны. возникающие в результате морских штормов и даже ураганов, "убийцами" не называют. Считается, что встреча с солитоном наиболее вероятна у южного побережья Африки. Когда транспортные морские пути благодаря Суэцкому каналу изменились и суда перестали ходить вокруг Африки, количество встреч с волнами-убийцами уменьшилось. Тем не менее уже после Второй мировой войны с 1947 года примерно за 12 лет с солитонами повстречались весьма крупные корабли - "Босфонтейн". "Гиастеркерк", "Оринфонтейн" и "Яхерефонтейн", не считая более мелких местных судов. В период арабо-израильской войны Суэцкий канал был практически закрыт, и движение судов вокруг Африки снова стало интенсивным. От встречи с волной-убийцей в июне 1968 года погиб супертанкер «Уорлд Глори» водоизмещением более 28 тысяч тонн. Танкер получил штормовое предупреждение, и при подходе шторма все выполнялось по инструкции. Ничего плохого не предвиделось. Но среди обычных ветровых волн, которые серьезной опасности не представляли. неожиданно возникла огромная волна высотой около 20 метров с очень крутым фронтом. Она подняла танкер так, что его середина -опиралась» на волну, а носовая и кормовая части оказались в воздухе. Танкер был нагружен сырой нефтью и под своим весом разломился пополам. Эти половинки еще какое-то время сохраняли плавучесть, но через четыре часа танкер ушел на дно. Правда, большую часть экипажа удалось спасти. В 70-е годы «нападения» волн-убийц на корабли продолжались. В августе 1973 года судно "Нептун Сапфир", шедшее из Европы в Японию, в 15 милях от мыса Хермис при ветре около 20 метров в секунду испытало неожиданный удар неизвестно откуда взявшейся одиночной волны. Удар был такой силы, что носовая часть судна длиной примерно 60 метров отломилась от корпуса! Судно «Нептун Сапфир» имело самую совершенную конструкцию для тех лет. Тем не менее встреча с волной-убийцей оказалась для него роковой. Подобных случаев описано довольно много. В страшный перечень катастроф, естественно, попадают не только крупные суда, на которых существуют возможности спасения экипажа. Встреча с волнами-убийцами для малых судов чаще всего заканчивается намного трагичнее. Такие корабли не только испытывают сильнейший удар. способный их разрушить, но на крутом переднем фронте волны могут запросто опрокинуться. Это происходит столь быстро, что рассчитывать на спасение невозможно.Это не цунами Что же это такое - волны-убийцы? Первая мысль, которая приходит в голову осведомленному читателю, - это цунами. После катастрофического «набега» гравитационных волн на юго-восточные берега Азии многие представляют цунами как жуткую стену воды с крутым передним фронтом, обрушивающуюся на берег и смывающую дома и людей. Действительно, цунами способны на многое. После появления этой волны у северных Курил гидрографы, изучая последствия, обнаружили приличных размеров катер, переброшенный через прибрежные холмы в глубь острова. То есть энергия цунами просто поражает. Однако это все касается цунами, «нападающих» на берег. В переводе на русский язык термин "цунами" означает "большая волна в гавани". Ее очень трудно обнаружить в открытом океане. Там высота этой волны обычно не превышает одного метра, а средние, типичные размеры -десятки сантиметров. Да и уклон чрезвычайно маленький, ведь при такой высоте ее длина составляет несколько километров. Так что выявить цунами на фоне бегущих ветровых волн или зыби практически нереально. Почему же при «нападении» на берег цунами становятся такими устрашающими? Дело в том, что эта волна из-за своей большой длины приводит в движение воду по всей глубине океана. И, когда при распространении она достигает сравнительно мелководных районов, вся эта колоссальная масса воды из глубин поднимается вверх. Вот так «безобидная» в открытом океане волна становится разрушительной на побережье. Так что волны-убийцы - это не цунами. На самом дел солитоны - это необыкновенное и малоизученное явление. Их называют волнами, хотя на самом деле они нечто иное. Для возникновения солитонов, конечно, необходим некоторый изначальный импульс, удар, иначе откуда взяться энергии, но не только. В отличие от обычных волн солитоны распространяются на большие расстояния с очень малым рассеянием энергии. Это загадка, которая еще ждет изучения. Солитоны практически не взаимодействуют друг с другом. Как правило, они распространяются с разными скоростями. Конечно, может получиться так, что один солитон догонит другой, и тогда они суммируются по высоте, но потом все равно снова разбегаются по своим путям. Конечно, сложение солитонов - редкое событие. Но есть еще одна причина резкого возрастания у них крутизны и высоты. Причина эта - подводные уступы, через которые «пробегает» солитон. При этом в подводной части происходит отражение энергии, и волна как бы «выплескивается» вверх. Подобная ситуация изучалась на физических моделях международной научной группой. Опираясь на эти исследования, можно прокладывать более безопасные маршруты движения судов. Но загадок все же остается намного больше, чем изученных особенностей, и тайна волн-убийц по-прежнему ждет своих исследователей. Особенно загадочны солитоны внутри вод моря, на так называемом «слое скачка плотности». Эти солитоны могут приводить (или уже приводили) к катастрофам подводных лодок.

Формат: doc

Дата создания: 31.05.2003

Размер: 125.1 KB

Скачать реферат

1. Введение

1.1. Волны в природе

2. Уравнение Кортевега - де Фриса

2.2. Групповой солитон

3. Постановка задачи

3.1. Описание модели

3.2. Постановка дифференциальной задачи.

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ

4.2. Законы сохранения для уравнения КдФ

5. Разностные схемы для решения уравнения КдФ

5.1. Обозначения и постановка разностной задачи.

5.2. Явные разностные схемы (обзор)

5.3 Неявные разностные схемы (обзор).

6.Численное решение

7. Заключение

8. Литература

1. Введение

      Волны в природе

Из школьного курса физики хорошо извест­но, что если в какой-либо точке упругой среды (твердой, жидкой или газообразной) возбудить ко­лебания, то они будут передаваться в другие места. Эта передача возбуждений обусловлена тем, что близкие участки среды связаны друг с другом. При этом колебания, возбужденные в одном месте, рас­пространяются в пространстве с определенной ско­ростью. Волной принято называть процесс передачи возбуждений среды (в частности, колебательного процесса) от одной точки к другой.

Природа механизма распространения волны может быть различной. В простейшем случае связи между участками в среде могут быть обусловлены силами упругости, которые возникают из-за дефор­маций в среде. При этом в твердой упругой среде могут распространяться как продольные волны, при которых смещения частиц среды осуществля­ются в направлении распространения волны, так и поперечные волны, у которых смещения частиц перпендикулярны распространению волны. В жид­кости или газе в отличие от твердых тел нет сил со­противления сдвигу, поэтому могут распространять­ся только продольные волны. Хорошо известный пример продольных волн в природе - звуковые вол­ны, которые возникают из-за упругости воздуха.

Среди волн иной природы особое место занима­ют электромагнитные волны, передача возбужде­ний у которых происходит из-за колебаний элект­рического и магнитного полей. Среда, в которой распространяются электромагнитные волны, как правило, оказывает существенное влияние на про­цесс распространения волн, однако электромагнит­ные волны в отличие от упругих могут распростра­няться даже в пустоте. Связь между различными участками в пространстве при распространении та­ких волн обусловлена тем, что изменение электри­ческого поля вызывает появление магнитного поля и наоборот.

С явлениями распространения электромагнит­ных волн мы часто сталкиваемся в нашей повседнев­ной жизни. К этим явлениям относятся радиоволны, применение которых в технических приложениях общеизвестно. В этой связи можно упомянуть рабо­ту радио и телевидения, которая основана на прие­ме радиоволн. К электромагнитным явлениям, только в другом частотном диапазоне, относится также свет, с помощью которого мы видим окружа­ющие нас предметы.

Очень важным и интересным типом волн яв­ляются волны на поверхности воды. Это один из распространенных видов волн, который каждый наблюдал еще в детстве и который обычно демон­стрируется в рамках школьного курса физики. Од­нако, по выражению Ричарда Фейнмана , "более неудачного примера для демонстрации волн приду­мать трудно, ибо эти волны нисколько не похожи ни на звук, ни на свет; здесь собрались все труднос­ти, которые могут быть в волнах".

Если рассмотреть достаточно глубокий бассейн, наполненный водой, и на его поверхности создать некоторое возмущение, то по поверхности воды начнут распространяться волны. Возникновение их объясняется тем, что частицы жидкости, которые находятся вблизи впадины, при создании возмуще­ния будут стремиться заполнить впадину, находясь под действием силы тяжести. Развитие этого явле­ния со временем и приведет к распространению волны на воде. Частицы жидкости в такой волне двигаются не вверх-вниз, а приблизительно по ок­ружностям, поэтому волны на воде не являются ни продольными, ни поперечными. Они как бы смесь тех и других. С глубиной радиусы окружностей, по которым двигаются частицы жидкости, уменьша­ются до тех пор, пока они не станут равными нулю.

Если анализировать скорость распространения волны на воде, то оказывается, что она зависит от ее длины. Скорость длинных волн пропорциональна корню квадратному из ускорения свободного паде­ния, умноженному на длину волны. Причиной воз­никновения таких волн является сила тяжести.

Для коротких волн восстанавливающая сила обусловлена силой поверхностного натяжения, и потому скорость таких волн пропорциональна кор­ню квадратному из частного, в числителе которого стоит коэффициент поверхностного натяжения, а в знаменателе - произведение длины волны на плот­ность воды. Для волн средней длины волны ско­рость их распространения зависит от перечислен­ных выше параметров задачи . Из сказанного ясно, что волны на воде и в самом деле довольно сложное явление.

1.2. Открытие уединенной волны

Волны на воде издавна привлекали к себе вни­мание исследователей. Это связано с тем, что они представляют собой широко известное явление в природе и, кроме того, сопровождают перемещение судов по воде.

Любопытную волну на воде наблюдал шотланд­ский ученый Джон Скотт Рассел в 1834 году. Он за­нимался исследованием перемещения по каналу баржи, которую тянула пара лошадей. Неожиданно баржа остановилась, но масса воды, которую баржа привела в движение, не остановилась, а собралась у носа судна, а затем оторвалась от него. Далее эта масса воды покатилась по каналу с большой скоро­стью в виде уединенного возвышения, не меняя своей формы и не снижая скорости.

На протяжении всей жизни Рассел неоднократ­но возвращался к наблюдению за этой волной, по­скольку верил, что открытая им уединенная волна играет важную роль во многих явлениях в природе. Он установил некоторые свойства этой волны. Во-первых, заметил, что она движется с постоянной скоростью и без изменения формы . Во-вторых, нашел зависимость скорости С этой волны от глу­бины канала h и высоты волны а:

где g - ускорение свободного падения, причем a < h . В-третьих, Рассел обнаружил, что возможен распад одной большой волны на несколько волн. В-четвер­тых, он отметил, что в экспериментах наблюдаются только волны возвышения. Однажды он также обра­тил внимание, что открытые им уединенные волны проходят друг через друга без каких-либо измене­ний , как и малые волны, образованные на поверхно­сти воды. Однако на последнее очень важное свой­ство он не обратил существенного внимания.

Работа Рассела, опубликованная в 1844 году как "Доклад о волнах", вызвала осторожную реакцию в среде ученых. На континенте ее не заметили сов­сем, а в самой Англии на нее обратили внимание Г.Р. Эйри и Дж.Г. Стоке. Эйри подверг критике ре­зультаты экспериментов, которые наблюдал Рассел. Он отмечал, что из теории длинных волн на мелкой воде выводы Рассела не получаются, и утверждал, что длинные волны не могут сохранять неизменную форму. И в конечном итоге подверг сомнению пра­вильность наблюдений Рассела. Один из основате­лей современной гидродинамики, Джордж Габриэль Стоке, также не согласился с результатами наблюде­ний, полученными Расселом, и критически отнесся к факту существования уединенной волны.

После столь негативного отношения к откры­тию уединенной волны долгое время о ней просто не вспоминали. Определенную ясность в наблюде­ния Рассела внесли Дж. Буссинеск (1872 год) и Дж.У. Рэлей (1876 год), которые независимо друг от друга нашли аналитическую формулу для возвыше­ния свободной поверхности на воде в виде квадрата гиперболического секанса и вычислили скорость распространения уединенной волны на воде.

Позже опыты Рассела были повторены другими исследователями и получили подтверждение.

1.3. Линейные и нелинейные волны

В качестве математических моделей при описа­нии распространения волн в различных средах час­то используют уравнения в частных производных. Это такие уравнения, которые содержат в качестве неизвестных производные от характеристик рассматриваемого явления. Причем поскольку ха­рактеристика (например, плотность воздуха при распространении звука) зависит от расстояния до источника и от времени, то и в уравнении использу­ются не одна, а две (а иногда и больше) производ­ные. Простое волновое уравнение имеет вид

u tt = c 2 u xx (1.1)

Характеристика волны и в этом уравнении зависит от пространственной координаты х и времени t , а индексы у переменной и обозначают вторую произ­водную от и по времени (u tt ) и вторую производную от и по переменной x (u xx ). Уравнение (1) описывает плоскую одномерную волну, аналогом которой мо­жет служить волна в струне. В этом уравнении в ка­честве и можно принять плотность воздуха, если речь идет, например, о звуковой волне в воздухе. Ес­ли рассматривают электромагнитные волны, то под и следует понимать напряженность электрического или магнитного поля.

Решение волнового уравнения (1), которое впервые было получено Ж. Д"Аламбером в 1748 го­ду, имеет вид

u(x,t)=f(x-ct)+g(x+ct) (1.2)

Здесь функции f и g находят из начальных условий для и. Уравнение (1.1) содержит вторую производную от и по t , поэтому для него следует задавать два на­чальных условия: значение и при t = 0 и производ­ную и, при t = 0.

Волновое уравнение (1.1) имеет очень важное свойство, суть которого заключена в следующем. Оказалось, что если взять два любых решения этого уравнения, то их сумма снова будет решением этого же уравнения. Это свойство отражает принцип су­перпозиции решений уравнения (1.1) и соответствует линейности явления, которое оно описывает. Для нелинейных моделей это свойство не выполняется, что приводит к существенным отличиям протекания процессов в соответствующих моделях. В частности, из выражения для скорости уединенной волны, ко­торую наблюдал Рассел, следует, что ее значение за­висит от амплитуды, а для волны, описываемой уравнением (1.1), такой зависимости нет.

Непосредственной подстановкой в уравнение (1.1) можно убедиться, что зависимость

u(x,t)=a cos(kx- t) (1.3)

в которой а, k и - постоянные, при k является решением уравнения (1). В этом решении а - амплитуда, k - волновое число, а - частота. При­веденное решение представляет собой монохрома­тическую волну, переносимую в среде с фазовой скоростью

c p = (1.4)

На практике монохроматическую волну создать трудно, и обычно имеют дело с цугом (пакетом) волн, в котором каждая волна распространяется со своей скоростью, а скорость распространения паке­та характеризуется групповой скоростью

C g = , (1.5)

определяемой через производную от частоты по волновому числу k .

Определить, с какой (линейной или нелиней­ной) моделью имеет дело исследователь, не всегда легко, но когда математическая модель сформули­рована, то решение этого вопроса упрощается и вы­полнение принципа суперпозиции решений можно проверить.

Возвращаясь к волнам на воде, заметим, что их можно анализировать используя хорошо известные уравнения гидродинамики, о которых известно, что они нелинейны. Поэтому и волны на воде в общем случае являются нелинейными. Только в предель­ном случае малых амплитуд эти волны могут счи­таться линейными.

Отметим, что и распространение звука не во всех случаях описывается линейным уравнением. Еще Рассел при обосновании своих наблюдений по уе­диненной волне отметил, что звук от выстрела пуш­ки распространяется в воздухе быстрее, чем коман­да произвести этот выстрел. Это объясняется тем, что распространение мощного звука описывается уже не волновым уравнением, а уравнениями газо­вой динамики.

  1. Уравнение Кортевега - де Фриса

Окончательная ясность в проблеме, которая воз­никла после опытов Рассела по уединенной волне, наступила после работы датских ученых Д.Д. Кортевега и Г. де Фриса, которые попытались разобраться в существе наблюдений Рассела. Обобщив метод Рэлея, эти ученые в 1895 году вывели уравнение для описания длинных волн на воде. Кортевег и де Фрис, используя уравнения гидродинамики, рас­смотрели отклонение и(х, t ) от положения равнове­сия поверхности воды при отсутствии вихрей и при постоянстве плотности воды. Сделанные ими на­чальные приближения были естественны. Они так­же предположили, что при распространении волны выполняются два условия для безразмерных пара­метров

= <<1, = (2.1)

Здесь а - амплитуда волны, h - глубина бассейна, в котором рассматриваются волны, l - длина волны (рис. 1).

Суть приближений состояла в том, что амплиту­да рассматриваемых волн была много меньше, чем

Рис. 1. Уединенная волна, распространяющаяся по каналу, и ее параметры

глубина бассейна, но в то же время длина волны бы­ла много больше, чем глубина бассейна. Таким образом, Кортевег и де Фрис рассматривали длин­ные волны.

Уравнение, которое было ими получено, имеет вид

u t + 6uu x + u xxx = 0. (2.2)

Здесь u (x,t) - отклонение от положения равновесия поверхности воды (форма волны) - зависит от ко­ординаты x и времени t . Индексы у характеристики u означают соответствующие производные по t и по x . Это уравнение, как и (1), является уравнением в ча­стных производных. Изучаемая характеристика у него (в данном случае u ) зависит от пространствен­ной координаты x и времени t .

Решить уравнение такого типа - значит найти зависимость u от x и t, после подстановки которой в уравнение мы придем к тождеству.

Уравнение (2.2) имеет волновое решение, извест­ное с конца прошлого века. Оно выражается через специальную эллиптическую функцию, изученную Карлом Якоби, которая носит теперь его имя.

При некоторых условиях эллиптическая функ­ция Якоби переходит в гиперболический секанс и решение имеет вид

u(x,t)=2k 2 ch -2 {k(x-4k 2 t)+ 0 } , (2.3)

где 0 - произвольная постоянная.

Решение (8) уравнения (7) является предельным случаем бесконечно большого периода волны. Именно этот предельный случай является уединен­ной волной, соответствующей наблюдению Рассела в 1834 году.

Решение (8) уравнения Кортевега- де Фриса яв­ляется бегущей волной. Это означает, что оно зави­сит от координаты x и времени t через переменную = x - c 0 t . Эта переменная характеризует положение точки координат, движущейся со скоростью волны с0, то есть она обозначает положение наблюдателя, который постоянно находится на гребне волны. Та­ким образом, уравнение Кортевега- де Фриса в от­личие от решения Д"Аламбера (1.2) волнового реше­ния (1.1) имеет волну, распространяющуюся лишь в одном направлении. Однако оно учитывает прояв­ление более сложных эффектов вследствие дополнительных слагаемых uu x и u xxx .

В действительности это уравнение является так­же приближенным, поскольку при его выводе ис­пользованы малые параметры (2.1) и . Если прене­бречь влиянием этих параметров, устремляя их к нулю, мы получим одну из частей решения Д"Алам­бера.

Конечно, при выводе уравнения для длинных волн на воде влияние параметров е и 6 может быть учтено более точно, но тогда получится уравнение, содержащее гораздо больше слагаемых, чем уравне­ние (2.2), и с производными более высокого порядка. Из сказанного следует, что решение уравнения Кортевега-де Фриса для описания волн справедливо только на определенном расстоянии от места обра­зования волны и на определенном промежутке вре­мени. На очень больших расстояниях нелинейные волны уже не будут описываться уравнением Кортевега-де Фриса, и для описания процесса потребует­ся более точная модель. Уравнение Кортевега-де Фриса в этом смысле следует рассматривать как не­которое приближение (математическую модель), со­ответствующее с определенной степенью точности реальному процессу распространения волн на воде.

Используя специальный подход, можно убе­диться, что принцип суперпозиции решений для уравнения Кортевега-де Фриса не выполняется, и поэтому это уравнение является нелинейным и описывает нелинейные волны.

2.1. Солитоны Кортевега - де Фриса

В настоящее время кажется странным, что от­крытие Рассела и его последующее подтверждение в работе Кортевега и де Фриса не получили замет­ного резонанса в науке. Эти работы оказались за­бытыми почти на 70 лет. Один из авторов уравне­ния, Д.Д. Кортевег, прожил долгую жизнь и был известным ученым. Но когда в 1945 году научная общественность отмечала его 100-летний юбилей, то в списке лучших публикаций работа, выполнен­ная им с де Фрисом, даже не значилась. Составите­ли списка сочли эту работу Кортевега не заслужива­ющей внимания. Только спустя еще четверть века именно эта работа стала считаться главным науч­ным достижением Кортевега.

Однако если поразмыслить, то такое невнима­ние к уединенной волне Рассела становится понят­ным. Дело в том, что в силу своей специфичности это открытие долгое время считалось довольно част­ным фактом. В самом деле, в то время физический мир казался линейным и принцип суперпозиции считался одним из фундаментальных принципов большинства физических теорий. Поэтому никто из исследователей не придал открытию экзотичес­кой волны на воде серьезного значения.

Возвращение к открытию уединенной волны на воде произошло в какой-то степени случайно и вна­чале, казалось, не имело к нему никакого отноше­ния. Виновником этого события стал величайший физик нашего столетия Энрико Ферми. В 1952 году Ферми попросил двух молодых физиков С. Улама и Д. Паста решить одну из нелинейных задач на ЭВМ. Они должны были рассчитать колебания 64 гру­зиков, связанных друг с другом пружинками, ко­торые при отклонении от положения равновесия на l приобретали возвращающуюся силу, равную k l +a (l ) 2 . Здесь k и a - постоянные коэффициен­ты. При этом нелинейная добавка предполагалась малой по сравнению с основной силой k l . Созда­вая начальное колебание, исследователи хотели по­смотреть, как эта начальная мода будет распреде­ляться по всем другим модам. После проведения расчетов этой задачи на ЭВМ ожидаемого результа­та они не получили, но обнаружили, что перекачи­вание энергии в две или три моды на начальном этапе расчета действительно происходит, но затем наблюдается возврат к начальному состоянию. Об этом парадоксе, связанном с возвратом начального колебания, стало известно нескольким математи­кам и физикам. В частности, об этой задаче узнали американские физики М. Крускал и Н. Забуски, ко­торые решили продолжить вычислительные экспе­рименты с моделью, предложенной Ферми.

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега-де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега-де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега-де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега-де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary - уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона . Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега-де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега-де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена-Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега-де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега-де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается

Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a 0 ch -1 (
)

где а а - амплитуда, а l - половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега- де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.

3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

u t + ии х + и ххх = 0 (3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к .

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы стали называться солитонами . Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в .

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике Q T ={(t , x ):0< t < T , x [0, l ].

u t + ии х + и ххх = 0 (3.2)

u(x,t)| x=0 =u(x,t)| x=l (3.3)

с начальным условием

u(x,t)| t=0 =u 0 (x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u 0 (х) рассматривалась во многих работах . Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье в пространстве L  (0,T ,H s (R 1)), где s>3/2, а в случае периодической задачи - в пространстве L  (0,T ,H  (C ))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге .

Случай, когда не предполагается какая-либо гладкость началь­ной функции u 0 L 2 (R 1 ) , рассмотрен в работе . Там вводит­ся понятие обобщенного решения задачи (3.2),(3.4), устанавливает­ся существование обобщенного решения и(t ,х) L (0, T , L 2 (R 1 )) в случае произвольной начальной функции u 0 L 2 (R 1 ) ; при этом и(t ,х) L 2 (0,Т;H -1 (- r , r )) для любого r>0 , и если для некото­рого > 0 (x u 0 2 (x )) L 1 (0,+ ) , то

(4.1)

Используя обращение линейной части уравнения при помощи фун­даментального решения G (t,x) соответствующего линейного опера­тора
, вводится класс корректности задачи (3.2),(1.4) и уста­навливаются теоремы единственности и непрерывной зависимости решений этой задачи от начальных данных. Также исследуются во­просы регулярности обобщенных решений. Одним из основных ре­зультатов является достаточное условие существования непрерыв­ной по Гельдеру при t > 0 производной
в терминах существования моментов для начальной функции, для любых k и l .

Задача Коши для уравнения КдФ исследовалась также методом обратной задачи рассеяния, предложенном в работе . При по­мощи этого метода были получены результаты о существовании и гладкости решений при достаточно быстро убывающих начальных функциях, причем в установлен, в частности, результат о раз­решимости задачи (3.2),(3.4) в пространстве C (О, Т; S(R 1 )) .

Наиболее полный обзор современных результатов по уравнению КдФ можно найти в .

4.2. Законы сохранения для уравнения КдФ. Как известно, для уравнения КдФ существует бесконечное число законов сохране­ ния. В работе приводится строгое доказательство этого факта. В работах , различные законы сохранения применялись для до­ казательства нелокальных теорем существования решения задачи (3.2),(3.4) из соответствующих пространств.

Продемонстрируем вывод первых трех законов сохранения для за­ дачи Коши на R 1 и периодической задачи.

Для получения первого закона сохранения достаточно проинте­ грировать уравнения (3.2) по пространственной переменной. Полу­ чим:

отсюда и следует первый закон сохранения:

Здесь в качестве a и b выступают +  и -  для задачи Коши и границы основного периода для периодической задачи. Поэтому второе и третье слагаемые обращаются в 0.

(4.2)

Для вывода второго закона сохранения следует умножить уравне­ ние (3.2) на 2 u (t,x) и проинтегрировать по пространственной пере­ менной. Тогда, используя формулу интегрирования по частям полу­ чим:

но в силу "краевых" условий все слагаемые кроме первого опять сокращаются

Таким образом второй интегральный закон сохранения имеет вид:

(4.3)

Для вывода третьего закона сохранения нужно умножить наше уравнение (3.2) на 2 + 2 и хх ), таким образом получим:

После применения несколько раз интегрирования по частям тре­тий и четвертый интегралы сокращаются. Второе и третье слагае­ мые исчезают из-за граничных условий. Таким образом из первого интеграла получаем:

что эквивалентно

А это и есть третий закон сохранения для уравнения (3.2). Под физическим смыслом первых двух интегральных законов со­ хранения в некоторых моделях можно понимать законы сохранения импульса и энергии, для третьего и последующих законов сохране­ния физический смысл охарактеризовать уже труднее, но с точки зрения математики эти законы дают дополнительную информацию о решении, которая используется потом для доказательств теорем существования и единственности решения, исследования его свойств и вывода априорных оценок.

5. Разностные схемы для решения уравнения КдФ

3.1. Обозначения и постановка разностной задачи. В области ={( x , t ):0 x l ,0 t T } обычным образом введем равномерные сетки, где

Введем линейное пространство h сеточных функций, определен­ных на сетке
со значениями в узлах сетки
y i = y h ( x i ). Пред­ полагается, что выполнены условия периодичности y 0 = y N . Кроме того, формально полагаем y i + N = y i для i 1 .

Введем скалярное произведение в пространстве h

(5.1)

Снабдим линейное пространство П/г нормой:

Поскольку в пространство h входят периодические функции, то это скалярное произведение эквивалентно скалярному произведе­ нию:

Будем строить разностные схемы для уравнения (3.2) на сетке с периодическими краевыми условиями. Нам потребуются обозна­чения разностных аппроксимаций. Введем их.

Используем стандартные обозначения для решения уравнения на очередном (n -м) временном слое, то есть

Введем обозначения для разностных аппроксимаций производных. Для первой производной по времени:

Аналогично для первой производной по пространству:

Теперь введем обозначения для вторых производных:

Третью пространственную производную будем аппроксимировать следующим образом:

Также нам потребуется аппроксимация у 2 , которую мы обозначим буквой Q и введем следующим образом:

(5.2)

Для записи уравнения на полу целых слоях будем использовать уравновешенную аппроксимацию, т.е.

за исключением аппроксимации у 2 на полу целом слое. Приведем одну из возможных аппроксимаций у 2 на полу целом слое:

Замечание 2. Стоит отметить, что для 1 выполняется равенство:

Определение 1. Следуя разностную схему для уравнения КдФ будем называть консервативной, если для нее имеет место сеточ­ ный аналог первого интегрального закона сохранения, справедливо­

Определение 2. Следуя разностную схему для уравнения КдФ будем называть L 2 -консервативной, если для нее имеет место сеточ­ ный аналог второго интегрального закона сохранения, справедливо­ го для дифференциальной задачи.

5.2. Явные разностные схемы (обзор). При построении раз­ ностных схем будем ориентироваться на простейшую разностную схему из работы для линеаризованного уравнения КдФ, кото­ рое сохраняет свойства самого уравнения КдФ в смысле двух первых законов сохранения.

(5.3)

Исследуем теперь схему (5.4) на свойства консервативности. Вы­ полнение первого закона сохранения очевидно. Достаточно просто умножить это уравнение скалярно на 1. Тогда второе и третье сла­ гаемые схемы (5.4) дадут 0, а от первого останется:

(5.4)

Это сеточный аналог первого закона сохранения.

Для вывода второго закона сохранения умножим скалярно урав­ нение (5.3) на 2 у. Приходим к энергетическому тождеству

(5.5)

Наличие отрицательного дисбаланса говорит не только о невыпол­ нении соответствующего закона сохранения, но и ставит под сомне­ние вопрос вообще об устойчивости схемы в наиболее слабой норме L 2 (). )- В работе показано, что схемы семейства (3.18) являются абсолютно неустойчивыми в норме L 2 ().

Другим примером явной двухслойной схемы является двух шаговая схема Лакса-Вендрофа . Это схема типа предиктор-корректор:

В данный момент наиболее популярными схемами для уравнения КдФ считаются трехслойные схемы ввиду их простоты, точности и удобства реализации.

(5.6)

Эту же схему можно представить в виде явной формулы

(5.7)

Самой простой трехслойной схемой является следующая схема:

Эта схема была использована при получении первых численных решений КдФ . Эта схема аппроксимирует дифференциальную задачу с порядком О ( 2 + h 2 ). Согласно , схема является устой­ чивой при выполнении условия (при малых Ь):

Приведем еще несколько схем. Трехслойная явная схема с поряд­ ком аппроксимации O ( 2 + h 4 ) :

Третья производная по пространству аппроксимируется на семи­ точечном шаблоне, а первая строится по пяти точкам. Согласно , эта схема устойчива при выполнении условия (при малых h ):

Легко видеть, что для этой схемы с более высоким порядком ап­проксимации условие устойчивости является более жестким.

В работе предлагается следующая явная разностная схема с порядком аппроксимации О( 2 + h 2 ) :

(5.8)

Так как разностное уравнение (5.8) можно записать в дивергент­ ном виде

то, скалярно умножив уравнение (5.9) на 1, получим

следовательно, выполняется соотношение:

которое можно считать сеточным аналогом первого закона сохране­ ния. Таким образом, схема (5.8) является консервативной. В доказано, что схема (5.8) является L 2 -консервативной и ее решение удовлетворяет сеточному аналогу интегрального закона сохранения

5.3. Неявные разностные схемы (обзор). В этом параграфе мы рассмотрим неявные разностные схемы для уравнения Кортевега-де Фриза.

Вариант двухслойной схемы - неявная абсолютно устойчивая схе­ ма с порядком аппроксимации О ( 2 , h 4 ) :

Решение разностной схемы (3.29) вычисляется с помощью семи д иагональной циклической прогонки . Вопрос о консервативности этой схемы не исследовался.

В работе предлагается неявная трехслойная схема с весами:

(5.10)

Разностная схемы (5.10) с периодическими по пространству реше­ниями, консервативна, L 2 -консервативна при =1/2 и =1/4 для ее решения имеют место сеточные аналоги интегральных законов сохранения.

6. Численное решение

Численное решение для (3.2), (3.3), (3.4) было проделано с использованием явной схемы

Решалась начально-краевая задача на отрезке . В качестве начальных условий бралась функция

u 0 (x)=sin (x).

Явным образом было получено решение.

Программа для расчетов была написана на языке Turbo Pascal 7.0. Текст основных частей программы прилагается.

Расчеты велись на вычислительной машине с процессором AMD -K 6-2 300 МГц с технологией 3DNOW !, размер оперативной памяти 32 Мб.

7. Заключение

Настоящая работа посвящена исследованию уравнения Кортевега – де Фриза. Проведен обширный литературный обзор по теме исследования. Изучены различные разностные схемы для уравнения КдФ. Выполнен практический счет с использованием явной пяти точечной разносной схемы

Как показал анализ литературных источников, явные схемы для решения уравнений типа КдФ наиболее применимы. В данной работе также решение было получено с использованием явной схемой.

8. Литература

1. Ландсберг Г.С. Элементарный учебник физики. М.: Наука, 1964. Т. 3.

2. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1965. Вып.4.

3. Филиппов А. Г Многоликий солитон. М.: Наука, 1986. (Б-чка "Квант"; Вып. 48).

4. Рубанков В.Н. Солитоны, новое в жизни, науке, тех­нике. М.: Знание, 1983. (Физика; Вып. 12).

5. Korteweg D.J., de Vries G. On the change form of long waves advancing in a rectangular channel and on new type of long stationary waves.//Phyl.May. 1895. e5. P . 422-443.

6. Сагдеев Р.З. Коллективные процессы и ударные волны в разре­женной плазме.-В кн.: Вопросы теории плазмы, Вып.4. М.: Атомиз-дат, 1964, с.20-80.

7. Березин Ю.А., Карпман В.И. К теории нестационарных волн конечной амплитуды в разреженной плазме. // ЖЭТФ, 1964, т.46, вып.5, с. 1880-1890.

8. Zabusky N.J., Kruskal M.D. Interactions of "solitons"in a collisionless plasma and the reccurence of initial states // Phys.Rev.Lett. 1965. V .15. еб. Р.240-243.

9. Буллаф Р., Кодри Ф. Солитоны. М.: Мир; 1983

10. Sjoberg A. On the Korteweg-de Vries equation, existence and uniqueness, Uppsala University, Department of Computers, 1967

11. Temam R. Sur un probleme non lineare // J.Math.Pures Anal. 1969, V.48, 2, P. 159-172.

12. Лионе Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.

13. Кружков С.Н. Фаминский А.В. Обобщенные решения для урав­нения Кортевега-де Фриза.// Матем. сборник, 1983, т. 120(162), еЗ, с.396-445

14.. Gardner C.S., Green J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys.Rev.Lett. 1967. V . 19. P . 1095-1097.

15. Шабат А.Б. Об уравнении Кортевега-де Фриза // ДАН СССР, 1973, т.211, еб, с.1310-1313.

16. Фаминский А.В. Граничные задачи для уравнения Кортевега-де Фриза и его обобщений: Дисс.... докт. физ.-матем. наук,М:РУДН,2001

17. Miura R.M., Gardner C.S., Kruscal M.D. Korteweg-de Vries equation and generlization. II. Existence of conservation laws and constants of motion. // J.Math.Phys. 1968. V .9. P . 1204-1209.

18. Амосов А.А., Злотник А.А. Разностная схема для уравнений движений газа.

19. Самарский А.А., Мажукин В.И., Матус П.П., Михайлик И.А. Z /2-консервативные схемы для уравнения Кортевега-де Фриса.// ДАН, 1997, т.357, е4, с.458-461

20. Березин Ю.А. Моделирование нелинейных волновых процес­сов. Новосибирск: Наука. 1982.

21. Березин Ю.А., О численных решениях уравнения Кортевега-де Вриза.// Численные методы механики сплошной среды. Новоси­бирск, 1973, т.4, е2, с.20-31

22. Самарский А.А., Николаев Методы решения сеточных уравнений. М: Наука, 1978

23. Самарский А.А., Гулин А.В. Численные методы. М: Наука, 1989

24. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М: Наука, 1987

Доктор технических наук А. ГОЛУБЕВ.

Человеку даже без специального физического или технического образования несомненно знакомы слова "электрон, протон, нейтрон, фотон". А вот созвучное с ними слово "солитон" многие, вероятно, слышат впервые. Это и неудивительно: хотя то, что обозначается этим словом, известно более полутора столетий, надлежащее внимание солитонам стали уделять лишь с последней трети ХХ века. Солитонные явления оказались универсальными и обнаружились в математике, гидромеханике, акустике, радиофизике, астрофизике, биологии, океанографии, оптической технике. Что же это такое - солитон?

Картина И. К. Айвазовского "Девятый вал". Волны на воде распространяются подобно групповым солитонам, в середине которых, в интервале от седьмой до десятой, идет самая высокая волна.

Обычная линейная волна имеет форму правильной синусоиды (а).

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Так ведет себя нелинейная волна на поверхности воды при отсутствии дисперсии.

Так выглядит групповой солитон.

Ударная волна перед шаром, летящим в шесть раз быстрее звука. На слух она воспринимается как громкий хлопок.

Во всех вышеперечисленных областях есть одна общая черта: в них или в отдельных их разделах изучаются волновые процессы, а проще говоря - волны. В наиболее общем смысле волна - это распространение возмущения какой-либо физической величины, характеризующей вещество или поле. Это распространение обычно происходит в какой-то среде - воде, воздухе, твердых телах. И только электромагнитные волны могут распространяться в вакууме. Все, несомненно, видели, как от брошенного в воду камня, "возмутившего" спокойную поверхность воды, расходятся сферические волны. Это пример распространения "одиночного" возмущения. Очень часто возмущение представляет собой колебательный процесс (в частности, периодический) в самых различных формах - качание маятника, колебания струны музыкального инструмента, сжатие и расширение кварцевой пластинки под действием переменного тока, колебания в атомах и молекулах. Волны - распространяющиеся колебания - могут иметь различную природу: волны на воде, звуковые, электромагнитные (в том числе световые) волны. Различие физических механизмов, реализующих волновой процесс, влечет за собой различные способы его математического описания. Но волнам разного происхождения присущи и некоторые общие свойства, для описания которых используют универсальный математический аппарат. А это означает, что можно изучать волновые явления, отвлекаясь от их физической природы.

В теории волн так обычно и делают, рассматривая такие свойства волн, как интерференция, дифракция, дисперсия, рассеяние, отражение и преломление. Но при этом имеет место одно важное обстоятельство: такой единый подход правомерен при условии, что изучаемые волновые процессы различной природы линейны.О том, что под этим понимается, мы поговорим чуть позже, а сейчас лишь заметим, что линейными могут быть только волны с не слишком большой амплитудой. Если же амплитуда волны велика, она становится нелинейной, и это имеет прямое отношение к теме нашей статьи - солитонам.

Поскольку мы все время говорим о волнах, нетрудно догадаться, что солитоны - тоже что-то из области волн. Это действительно так: солитоном называют весьма необычное образование - "уединенную" волну (solitary wave). Механизм ее возникновения долгое время оставался загадкой для исследователей; казалось, что природа этого явления противоречит хорошо известным законам образования и распространения волн. Ясность появилась сравнительно недавно, и сейчас изучают солитоны в кристаллах, магнитных материалах, волоконных световодах, в атмосфере Земли и других планет, в галактиках и даже в живых организмах. Оказалось, что и цунами, и нервные импульсы, и дислокации в кристаллах (нарушения периодичности их решеток) - все это солитоны! Солитон поистине "многолик". Кстати, именно так и называется прекрасная научно-популярная книга А. Филиппова "Многоликий солитон". Ее мы рекомендуем читателю, не боящемуся довольно большого количества математических формул.

Чтобы понять основные идеи, связанные с солитонами, и при этом обойтись практически без математики, придется поговорить в первую очередь об упоминавшейся уже нелинейности и о дисперсии - явлениях, лежащих в основе механизма образования солитонов. Но сначала расскажем о том, как и когда был обнаружен солитон. Он впервые явился человеку в "обличии" уединенной волны на воде.

Это случилось в 1834 году. Джон Скотт Рассел, шотландский физик и талантливый инженер-изобретатель, получил предложение исследовать возможности навигации паровых судов по каналу, соединяющему Эдинбург и Глазго. В то время перевозки по каналу осуществлялись с помощью небольших барж, которые тащили лошади. Чтобы выяснить, как нужно переоборудовать баржи при замене конной тяги на паровую, Рассел начал вести наблюдения за баржами различной формы, движущимися с разными скоростями. И в ходе этих опытов он неожиданно столкнулся с совершенно необычным явлением. Вот как он описал его в своем "Докладе о волнах":

"Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась. Но масса воды, которую баржа привела в движение, собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения - округлого, гладкого и четко выраженного водяного холма. Он продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда нагнал его, он по-прежнему катился вперед со скоростью примерно 8-9 миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до полутора футов. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала".

Рассел назвал обнаруженное им явление "уединенной волной трансляции". Однако его сообщение встретили скепсисом признанные авторитеты в области гидродинамики - Джордж Эйри и Джордж Стокс, полагавшие, что волны при движении на большие расстояния не могут сохранять свою форму. Для этого у них были все основания: они исходили из общепринятых в то время уравнений гидродинамики. Признание "уединенной" волны (которая была названа солитоном гораздо позже - в 1965 году) произошло еще при жизни Рассела трудами нескольких математиков, которые показали, что существовать она может, и, кроме того, были повторены и подтверждены опыты Рассела. Но споры вокруг солитона все же долго не прекращались - слишком велик был авторитет Эйри и Стокса.

Окончательную ясность в проблему внесли голландский ученый Дидерик Иоханнес Кортевег и его ученик Густав де Фриз. В 1895 году, через тринадцать лет после смерти Рассела, они нашли точное уравнение, волновые решения которого полностью описывают происходящие процессы. В первом приближении это можно пояснить следующим образом. Волны Кортевега - де Фриза имеют несинусоидальную форму и становятся синусоидальными только в том случае, когда их амплитуда очень мала. При увеличении длины волны они приобретают вид далеко разнесенных друг от друга горбов, а при очень большой длине волны остается один горбик, который и соответствует "уединенной" волне.

Уравнение Кортевега - де Фриза (так называемое КдФ-уравнение) сыграло очень большую роль в наши дни, когда физики поняли его универсальность и возможность приложения к волнам различной природы. Самое замечательное, что оно описывает нелинейные волны, и теперь следует более подробно остановиться на этом понятии.

В теории волн фундаментальное значение имеет волновое уравнение. Не приводя его здесь (для этого требуется знакомство с высшей математикой), отметим лишь, что искомая функция, описывающая волну, и связанные с ней величины содержатся в первой степени. Такие уравнения называются линейными. Волновое уравнение, как и любое другое, имеет решение, то есть математическое выражение, при подстановке которого обращается в тождество. Решением волнового уравнения служит линейная гармоническая (синусоидальная) волна. Подчеркнем еще раз, что термин "линейная" употребляется здесь не в геометрическом смысле (синусоида - не прямая линия), а в смысле использования первой степени величин в волновом уравнении.

Линейные волны подчиняются принципу суперпозиции (сложения). Это означает, что при наложении нескольких линейных волн форма результирующей волны определяется простым сложением исходных волн. Это происходит потому, что каждая волна распространяется в среде независимо от других, между ними нет ни обмена энергией, ни иного взаимодействия, они свободно проходят одна через другую. Иными словами, принцип суперпозиции означает независимость волн, и именно поэтому их можно складывать. При обычных условиях это справедливо для звуковых, световых и радиоволн, а также для волн, которые рассматриваются в квантовой теории. Но для волн в жидкости это не всегда верно: складывать можно лишь волны очень малой амплитуды. Если попытаться сложить волны Кортевега - де Фриза, то мы вообще не получим волну, которая может существовать: уравнения гидродинамики нелинейны.

Здесь важно подчеркнуть, что свойство линейности акустических и электромагнитных волн соблюдается, как было уже отмечено, при обычных условиях, под которыми подразумеваются, прежде всего, небольшие амплитуды волн. Но что значит - "небольшие амплитуды"? Амплитуда звуковых волн определяет громкость звука, световых - интенсивность света, а радиоволн - напряженность электромагнитного поля. Радиовещание, телевидение, телефонная связь, компьютеры, осветительные приборы и многие другие устройства работают в тех самых "обычных условиях", имея дело с разнообразными волнами малой амплитуды. Если же амплитуда резко увеличивается, волны теряют линейность и тогда возникают новые явления. В акустике давно известны ударные волны, распространяющиеся со сверхзвуковой скоростью. Примеры ударных волн - раскаты грома во время грозы, звуки выстрела и взрыва и даже хлопанье кнута: его кончик движется быстрее звука. Нелинейные световые волны получают с помощью мощных импульсных лазеров. Прохождение таких волн через различные среды меняет свойства самих сред; наблюдаются совершенно новые явления, составляющие предмет изучения нелинейной оптики. Например, возникает световая волна, длина которой в два раза меньше, а частота, соответственно, вдвое больше, чем у входящего света (происходит генерация второй гармоники). Если направить на нелинейный кристалл, скажем, мощный лазерный пучок с длиной волны l 1 = 1,06 мкм (инфракрасное излучение, невидимое глазом), то на выходе кристалла возникает кроме инфракрасного зеленый свет с длиной волны l 2 =0,53 мкм.

Если нелинейные звуковые и световые волны образуются только в особых условиях, то гидродинамика нелинейна по самой своей природе. А поскольку гидродинамика проявляет нелинейность уже в самых простых явлениях, почти столетие она развивалась в полной изоляции от "линейной" физики. Никому просто не приходило в голову искать что-либо похожее на "уединенную" волну Рассела в других волновых явлениях. И только когда были разработаны новые области физики - нелинейные акустика, радиофизика и оптика, - исследователи вспомнили о солитоне Рассела и задались вопросом: только ли в воде может наблюдаться подобное явление? Для этого надо было понять общий механизм образования солитона. Условие нелинейности оказалось необходимым, но недостаточным: от среды требовалось еще что-то, чтобы в ней смогла родиться "уединенная" волна. И в результате исследований стало ясно - недостающим условием оказалось наличие дисперсии среды.

Напомним кратко, что это такое. Дисперсией называется зависимость скорости распространения фазы волны (так называемой фазовой скорости) от частоты или, что то же самое, длины волны (см. "Наука и жизнь" № ). Несинусоидальную волну любой формы по известной теореме Фурье можно представить совокупностью простых синусоидальных составляющих с различными частотами (длинами волн), амплитудами и начальными фазами. Эти составляющие из-за дисперсии распространяются с различными фазовыми скоростями, что приводит к "размыванию" формы волны при ее распространении. Но солитон, который тоже можно представить как сумму указанных составляющих, как мы уже знаем, при движении свою форму сохраняет. Почему? Вспомним, что солитон - волна нелинейная. И вот тут-то и лежит ключ к раскрытию его "тайны". Оказывается, что солитон возникает тогда, когда эффект нелинейности, делающий "горб" солитона более крутым и стремящийся его опрокинуть, уравновешивается дисперсией, делающей его более пологим и стремящейся его размыть. То есть солитон возникает "на стыке" нелинейности и дисперсии, компенсирующих друг друга.

Поясним это на примере. Предположим, что на поверхности воды образовался горбик, который начал перемещаться. Посмотрим, что будет, если не учитывать дисперсию. Скорость нелинейной волны зависит от амплитуды (у линейных волн такой зависимости нет). Быстрее всех будет двигаться вершина горбика, и в некоторый следующий момент его передний фронт станет круче. Крутизна фронта увеличивается, и с течением времени произойдет "опрокидывание" волны. Подобное опрокидывание волн мы видим, наблюдая прибой на морском берегу. Теперь посмотрим, к чему приводит наличие дисперсии. Первоначальный горбик можно представить суммой синусоидальных составляющих с различными длинами волн. Длинноволновые составляющие бегут с большей скоростью, чем коротковолновые, и, следовательно, уменьшают крутизну переднего фронта, в значительной степени выравнивая его (см. "Наука и жизнь" № 8, 1992 г.). При определенной форме и скорости горбика может наступить полное восстановление первоначальной формы, и тогда образуется солитон.

Одно из удивительных свойств "уединенных" волн состоит в том, что они во многом подобны частицам. Так, при столкновении два солитона не проходят друг через друга, как обычные линейные волны, а как бы отталкиваются друг от друга подобно теннисным мячам.

На воде могут возникать солитоны и другого типа, названные групповыми, так как их форма весьма сходна с группами волн, которые в реальности наблюдаются вместо бесконечной синусоидальной волны и перемещаются с групповой скоростью. Групповой солитон весьма напоминает амплитудно-модулированные электромагнитные волны; его огибающая несинусоидальна, она описывается более сложной функцией - гиперболическим секансом. Скорость такого солитона не зависит от амплитуды, и этим он отличается от КдФ-солитонов. Под огибающей обычно находится не более 14-20 волн. Средняя - самая высокая - волна в группе оказывается, таким образом, в интервале от седьмой до десятой; отсюда известное выражение "девятый вал".

Рамки статьи не позволяют рассмотреть многие другие типы солитонов, например солитоны в твердых кристаллических телах - так называемые дислокации (они напоминают "дырки" в кристаллической решетке и тоже способны перемещаться), родственные им магнитные солитоны в ферромагнетиках (например, в железе), солитоноподобные нервные импульсы в живых организмах и многие другие. Ограничимся рассмотрением оптических солитонов, которые в последнее время привлекли внимание физиков возможностью их использования в весьма перспективных линиях оптической связи.

Оптический солитон - типичный групповой солитон. Его образование можно уяснить на примере одного из нелинейно-оптических эффектов - так называемой самоиндуцированной прозрачности. Этот эффект заключается в том, что среда, поглощающая свет небольшой интенсивности, то есть непрозрачная, внезапно становится прозрачной при прохождении сквозь нее мощного светового импульса. Чтобы понять, почему это происходит, вспомним, чем обусловлено поглощение света в веществе.

Световой квант, взаимодействуя с атомом, отдает ему энергию и переводит на более высокий энергетический уровень, то есть в возбужденное состояние. Фотон при этом исчезает - среда поглощает свет. После того как все атомы среды возбуждаются, поглощение световой энергии прекращается - среда становится прозрачной. Но такое состояние не может длиться долго: фотоны, летящие следом, заставляют атомы возвращаться в исходное состояние, испуская кванты той же частоты. Именно это и происходит, когда через такую среду направляется короткий световой импульс большой мощности соответствующей частоты. Передний фронт импульса перебрасывает атомы на верхний уровень, частично при этом поглощаясь и становясь слабее. Максимум импульса поглощается уже меньше, а задний фронт импульса стимулирует обратный переход с возбужденного уровня на основной. Атом излучает фотон, его энергия возвращается импульсу, который и проходит через среду. При этом форма импульса оказывается соответствующей групповому солитону.

Совсем недавно в одном из американских научных журналов появилась публикация о ведущихся известной фирмой "Белл" (Bell Laboratories, США, штат Нью-Джерси) разработках передачи сигналов на сверхбольшие расстояния по оптическим волоконным световодам с использованием оптических солитонов. При обычной передаче по оптико-волоконным линиям связи сигнал должен подвергаться усилению через каждые 80-100 километров (усилителем может служить сам световод при его накачке светом определенной длины волны). А через каждые 500-600 километров приходится устанавливать ретранслятор, преобразующий оптический сигнал в электрический с сохранением всех его параметров, а затем вновь в оптический для дальнейшей передачи. Без этих мер сигнал на расстоянии, превышающем 500 километров, искажается до неузнаваемости. Стоимость этого оборудования очень высока: передача одного терабита (10 12 бит) информации из Сан-Франциско в Нью-Йорк обходится в 200 миллионов долларов на каждую ретрансляционную станцию.

Использование оптических солитонов, сохраняющих свою форму при распространении, позволяет осуществить полностью оптическую передачу сигнала на расстояния до 5-6 тысяч километров. Однако на пути создания "солитонной линии" имеются существенные трудности, которые удалось преодолеть только в самое последнее время.

Возможность существования солитонов в оптическом волокне предсказал в 1972 году физик-теоретик Акира Хасегава, сотрудник фирмы "Белл". Но в то время еще не было световодов с низкими потерями в тех областях длин волн, где можно наблюдать солитоны.

Оптические солитоны могут распространяться только в световоде с небольшим, но конечным значением дисперсии. Однако оптического волокна, сохраняющего требуемое значение дисперсии во всей спектральной ширине многоканального передатчика, просто не существует. А это делает "обычные" солитоны непригодными для использования в сетях с длинными линиями передачи.

Подходящая солитонная технология создавалась в течение ряда лет под руководством Линна Молленауэра, ведущего специалиста Отдела оптических технологий все той же фирмы "Белл". В основу этой технологии легла разработка оптических волокон с управляемой дисперсией, позволившая создать солитоны, форма импульсов которых может поддерживаться неограниченно долго.

Метод управления состоит в следующем. Величина дисперсии по длине волоконного световода периодически изменяется между отрицательным и положительным значениями. В первой секции световода импульс расширяется и сдвигается в одном направлении. Во второй секции, имеющей дисперсию противоположного знака, происходят сжатие импульса и сдвиг в обратном направлении, в результате чего его форма восстанавливается. При дальнейшем движении импульс опять расширяется, затем входит в следующую зону, компенсирующую действие предыдущей зоны, и так далее - происходит циклический процесс расширений и сжатий. Импульс испытывает пульсацию по ширине с периодом, равным расстоянию между оптическими усилителями обычного световода - от 80 до 100 километров. В результате, по заявлению Молленауэра, сигнал при объеме информации более 1 терабита может пройти без ретрансляции по меньшей мере 5 - 6 тысяч километров со скоростью передачи 10 гигабит в секунду на канал без каких-либо искажений. Подобная технология сверхдальней связи по оптическим линиям уже близка к стадии реализации.